|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
import soundfile as sf |
|
from transformers import pipeline |
|
import os |
|
from huggingface_hub import login |
|
|
|
|
|
hugging_face_token = os.getenv("ASR_CEB_HUGGING_FACE_TOKEN") |
|
|
|
|
|
login(token=hugging_face_token) |
|
|
|
asr_ceb = pipeline("automatic-speech-recognition", model = "sil-ai/wav2vec2-bloom-speech-ceb") |
|
asr_whisper_large = pipeline("automatic-speech-recognition", model = "openai/whisper-large-v3") |
|
asr_whisper_ceb = pipeline("automatic-speech-recognition", |
|
model = "nlewins/whisper-small-translate-X-gen2-examples-quality-step4-1e-6") |
|
|
|
|
|
def transcribe_speech(filepath): |
|
if filepath is None: |
|
gr.Warning("No audio found, please retry.") |
|
return "" |
|
_, sample_rate = librosa.load(filepath, sr = None) |
|
model_rate = asr_ceb.feature_extractor.sampling_rate |
|
if sample_rate != model_rate: |
|
filepath = resample_audio_for_processing(filepath, model_rate, sample_rate) |
|
|
|
output_ceb = asr_ceb(filepath) |
|
generate_kwargs = { |
|
|
|
"task": "translate" |
|
} |
|
output_whisper_large_translate = asr_whisper_large(filepath, generate_kwargs = generate_kwargs) |
|
output_whisper_large = asr_whisper_large(filepath) |
|
output_whisper_ceb = asr_whisper_ceb(filepath) |
|
return (output_ceb["text"], output_whisper_large["text"], output_whisper_large_translate["text"], |
|
output_whisper_ceb["text"]) |
|
|
|
|
|
def resample_audio_for_processing(filepath, model_rate, sample_rate): |
|
print(f"Audio loaded with rate: {sample_rate} Hz while model requires rate: {model_rate} Hz") |
|
try: |
|
print("Resampling audio...") |
|
audio_data, sr = librosa.load(filepath, sr = None) |
|
|
|
audio_data = np.array(audio_data) |
|
|
|
audio_resampled = librosa.resample(audio_data, orig_sr = sample_rate, target_sr = model_rate) |
|
|
|
resampled_audio_path = 'resampled_audio.wav' |
|
sf.write(resampled_audio_path, audio_resampled, 16000) |
|
print("Audio resampled successfully.") |
|
return resampled_audio_path |
|
except Exception as e: |
|
print(f"Error resampling audio: {e}, processing with audio as is it !") |
|
return filepath |
|
|
|
|
|
mic_transcribe = gr.Interface( |
|
fn = transcribe_speech, |
|
inputs = gr.Audio(sources = ["microphone"], type = "filepath"), |
|
outputs = [gr.Textbox(label = "Transcription CEB (sil-ai)"), gr.Textbox(label = "Transcription (openai)"), |
|
gr.Textbox(label = "Translation (openai)"), |
|
gr.Textbox(label = "Transcription (nlewins)")] |
|
, allow_flagging = "never") |
|
|
|
file_transcribe = gr.Interface( |
|
fn = transcribe_speech, |
|
inputs = gr.Audio(sources = ["upload"], type = "filepath"), |
|
outputs = [gr.Textbox(label = "Transcription CEB (sil-ai)"), gr.Textbox(label = "Transcription (openai)"), |
|
gr.Textbox(label = "Translation (openai)"), |
|
gr.Textbox(label = "Translation (nlewins)")] |
|
, allow_flagging = "never", |
|
) |
|
|
|
demo = gr.TabbedInterface( |
|
[mic_transcribe, file_transcribe], |
|
["Use your Microphone", "Upload Audio File"], |
|
) |
|
|
|
if __name__ == '__main__': |
|
demo.launch() |
|
|