Spaces:
Runtime error
Runtime error
from math import ceil, floor | |
import streamlit.components.v1 as components | |
from transformers import ( | |
AutoModelForSeq2SeqLM, | |
AutoTokenizer, | |
) | |
import streamlit as st | |
import sys | |
import os | |
import json | |
from urllib.parse import quote | |
from huggingface_hub import hf_hub_download | |
# Allow direct execution | |
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa | |
from predict import SegmentationArguments, ClassifierArguments, predict as pred, seconds_to_time # noqa | |
from evaluate import EvaluationArguments | |
from shared import device | |
st.set_page_config( | |
page_title='SponsorBlock ML', | |
page_icon='🤖', | |
# layout='wide', | |
# initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://github.com/xenova/sponsorblock-ml', | |
'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose', | |
# 'About': "# This is a header. This is an *extremely* cool app!" | |
} | |
) | |
# https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints | |
# https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints | |
# https://huggingface.co/docs/transformers/model_doc/t5 | |
# https://huggingface.co/docs/transformers/model_doc/t5v1.1 | |
# Faster caching system for predictions (No need to hash) | |
def persistdata(): | |
return {} | |
prediction_cache = persistdata() | |
MODELS = { | |
'Small (77M)': { | |
'pretrained': 'google/t5-v1_1-small', | |
'repo_id': 'Xenova/sponsorblock-small', | |
}, | |
'Base v1 (220M)': { | |
'pretrained': 't5-base', | |
'repo_id': 'EColi/sponsorblock-base-v1', | |
}, | |
'Base v1.1 (250M)': { | |
'pretrained': 'google/t5-v1_1-base', | |
'repo_id': 'Xenova/sponsorblock-base', | |
} | |
} | |
# Create per-model cache | |
for m in MODELS: | |
if m not in prediction_cache: | |
prediction_cache[m] = {} | |
CATGEGORY_OPTIONS = { | |
'SPONSOR': 'Sponsor', | |
'SELFPROMO': 'Self/unpaid promo', | |
'INTERACTION': 'Interaction reminder', | |
} | |
CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier' | |
def load_predict(model_id): | |
model_info = MODELS[model_id] | |
# Use default segmentation and classification arguments | |
evaluation_args = EvaluationArguments(model_path=model_info['repo_id']) | |
segmentation_args = SegmentationArguments() | |
classifier_args = ClassifierArguments() | |
model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path) | |
model.to(device()) | |
tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path) | |
# Save classifier and vectorizer | |
hf_hub_download(repo_id=CLASSIFIER_PATH, | |
filename=classifier_args.classifier_file, | |
cache_dir=classifier_args.classifier_dir, | |
force_filename=classifier_args.classifier_file, | |
) | |
hf_hub_download(repo_id=CLASSIFIER_PATH, | |
filename=classifier_args.vectorizer_file, | |
cache_dir=classifier_args.classifier_dir, | |
force_filename=classifier_args.vectorizer_file, | |
) | |
def predict_function(video_id): | |
if video_id not in prediction_cache[model_id]: | |
prediction_cache[model_id][video_id] = pred( | |
video_id, model, tokenizer, | |
segmentation_args=segmentation_args, | |
classifier_args=classifier_args | |
) | |
return prediction_cache[model_id][video_id] | |
return predict_function | |
def main(): | |
# Display heading and subheading | |
st.write('# SponsorBlock ML') | |
st.write('##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.') | |
model_id = st.selectbox('Select model', MODELS.keys(), index=0) | |
# Load prediction function | |
predict = load_predict(model_id) | |
video_id = st.text_input('Video ID:') # , placeholder='e.g., axtQvkSpoto' | |
categories = st.multiselect('Categories:', | |
CATGEGORY_OPTIONS.keys(), | |
CATGEGORY_OPTIONS.keys(), | |
format_func=CATGEGORY_OPTIONS.get | |
) | |
# Hide segments with a confidence lower than | |
confidence_threshold = st.slider( | |
'Confidence Threshold (%):', min_value=0, max_value=100) | |
video_id_length = len(video_id) | |
if video_id_length == 0: | |
return | |
elif video_id_length != 11: | |
st.exception(ValueError('Invalid YouTube ID')) | |
return | |
with st.spinner('Running model...'): | |
predictions = predict(video_id) | |
if len(predictions) == 0: | |
st.success('No segments found!') | |
return | |
submit_segments = [] | |
for index, prediction in enumerate(predictions, start=1): | |
if prediction['category'] not in categories: | |
continue # Skip | |
confidence = prediction['probability'] * 100 | |
if confidence < confidence_threshold: | |
continue | |
submit_segments.append({ | |
'segment': [prediction['start'], prediction['end']], | |
'category': prediction['category'].lower(), | |
'actionType': 'skip' | |
}) | |
start_time = seconds_to_time(prediction['start']) | |
end_time = seconds_to_time(prediction['end']) | |
with st.expander( | |
f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})" | |
): | |
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}" | |
# autoplay=1controls=0&&modestbranding=1&fs=0 | |
# , width=None, height=None, scrolling=False | |
components.iframe(url, width=670, height=376) | |
text = ' '.join(w['text'] for w in prediction['words']) | |
st.write(f"**Times:** {start_time} \u2192 {end_time}") | |
st.write( | |
f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}") | |
st.write(f"**Confidence:** {confidence:.2f}%") | |
st.write(f'**Text:** "{text}"') | |
json_data = quote(json.dumps(submit_segments)) | |
link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})' | |
st.markdown(link, unsafe_allow_html=True) | |
wikiLink = f'[Review generated segments before submitting!](https://wiki.sponsor.ajay.app/w/Automating_Submissions)' | |
st.markdown(wikiLink, unsafe_allow_html=True) | |
if __name__ == '__main__': | |
main() | |