Spaces:
Runtime error
Runtime error
Joshua Lochner
commited on
Commit
·
004109e
1
Parent(s):
f11d2c2
Fix shared prediction cache
Browse files
app.py
CHANGED
@@ -42,26 +42,29 @@ st.set_page_config(
|
|
42 |
def persistdata():
|
43 |
return {}
|
44 |
|
|
|
45 |
|
46 |
MODELS = {
|
47 |
'Small (77M)': {
|
48 |
'pretrained': 'google/t5-v1_1-small',
|
49 |
'repo_id': 'Xenova/sponsorblock-small',
|
50 |
-
'cache': persistdata()
|
51 |
},
|
52 |
'Base v1 (220M)': {
|
53 |
'pretrained': 't5-base',
|
54 |
'repo_id': 'EColi/sponsorblock-base-v1',
|
55 |
-
'cache': persistdata()
|
56 |
},
|
57 |
|
58 |
'Base v1.1 (250M)': {
|
59 |
'pretrained': 'google/t5-v1_1-base',
|
60 |
'repo_id': 'Xenova/sponsorblock-base',
|
61 |
-
'cache': persistdata()
|
62 |
}
|
63 |
}
|
64 |
|
|
|
|
|
|
|
|
|
|
|
65 |
CATGEGORY_OPTIONS = {
|
66 |
'SPONSOR': 'Sponsor',
|
67 |
'SELFPROMO': 'Self/unpaid promo',
|
@@ -98,13 +101,13 @@ def load_predict(model_id):
|
|
98 |
)
|
99 |
|
100 |
def predict_function(video_id):
|
101 |
-
if video_id not in
|
102 |
-
|
103 |
video_id, model, tokenizer,
|
104 |
segmentation_args=segmentation_args,
|
105 |
classifier_args=classifier_args
|
106 |
)
|
107 |
-
return
|
108 |
|
109 |
return predict_function
|
110 |
|
|
|
42 |
def persistdata():
|
43 |
return {}
|
44 |
|
45 |
+
prediction_cache = persistdata()
|
46 |
|
47 |
MODELS = {
|
48 |
'Small (77M)': {
|
49 |
'pretrained': 'google/t5-v1_1-small',
|
50 |
'repo_id': 'Xenova/sponsorblock-small',
|
|
|
51 |
},
|
52 |
'Base v1 (220M)': {
|
53 |
'pretrained': 't5-base',
|
54 |
'repo_id': 'EColi/sponsorblock-base-v1',
|
|
|
55 |
},
|
56 |
|
57 |
'Base v1.1 (250M)': {
|
58 |
'pretrained': 'google/t5-v1_1-base',
|
59 |
'repo_id': 'Xenova/sponsorblock-base',
|
|
|
60 |
}
|
61 |
}
|
62 |
|
63 |
+
# Create per-model cache
|
64 |
+
for m in MODELS:
|
65 |
+
if m not in prediction_cache:
|
66 |
+
prediction_cache[m] = {}
|
67 |
+
|
68 |
CATGEGORY_OPTIONS = {
|
69 |
'SPONSOR': 'Sponsor',
|
70 |
'SELFPROMO': 'Self/unpaid promo',
|
|
|
101 |
)
|
102 |
|
103 |
def predict_function(video_id):
|
104 |
+
if video_id not in prediction_cache[model_id]:
|
105 |
+
prediction_cache[model_id][video_id] = pred(
|
106 |
video_id, model, tokenizer,
|
107 |
segmentation_args=segmentation_args,
|
108 |
classifier_args=classifier_args
|
109 |
)
|
110 |
+
return prediction_cache[model_id][video_id]
|
111 |
|
112 |
return predict_function
|
113 |
|