mdj1412's picture
Upload 4 files
509d266
raw
history blame
3.04 kB
import gradio as gr
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import random
import torch
README = """
# Movie Review Score Discriminator
It is a program that classifies whether it is positive or negative by entering movie reviews.
You can choose between the Korean version and the English version.
## Usage
"""
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
label2id = {"NEGATIVE": 0, "POSITIVE": 1}
title = "Movie Review Score Discriminator"
description = "It is a program that classifies whether it is positive or negative by entering movie reviews. You can choose between the Korean version and the English version."
def tokenized_data(tokenizer, inputs):
return tokenizer.batch_encode_plus(
inputs,
return_tensors="pt",
padding="max_length",
max_length=64,
truncation=True)
examples_eng = ["the greatest musicians ", "cold movie "]
examples_kor = ["๊ธ์ •", "๋ถ€์ •"]
examples = []
df = pd.read_csv('examples.csv', sep='\t', index_col='Unnamed: 0')
for i in range(2):
idx = random.randint(0, 50)
examples.append(df.iloc[idx, 0])
examples.append(df.iloc[idx, 1])
model_kor = gr.Interface.load("models/cardiffnlp/twitter-roberta-base-sentiment")
model_eng = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng")
def builder(version, inputs):
if version == 'Eng':
model_name = "roberta-base"
step = 1900
else:
model_name = "klue/roberta-small"
step = 2400
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenized_data(tokenizer, inputs)
file_name = "{}-{}.pt".format(model_name, step)
state_dict = torch.load(file_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name, num_labels=2, id2label=id2label, label2id=label2id,
state_dict=state_dict
)
model.eval()
with torch.no_grad():
logits = model(input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask']).logits
prediction = torch.argmax(logits, axis=1)
return id2label[prediction.item()]
def builder2(inputs):
return model_eng(inputs)
demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Eng', 'Kor']), "text"], outputs="text",
title=title, description=description, examples=[examples])
# demo2 = gr.Interface(builder2, inputs="text", outputs="text",
# title=title, theme="peach",
# allow_flagging="auto",
# description=description, examples=examples)
# demo3 = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng", inputs="text", outputs="text",
# title=title, theme="peach",
# allow_flagging="auto",
# description=description, examples=examples)
if __name__ == "__main__":
demo.launch()
# demo3.launch()