Upload app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
|
6 |
-
from transformers import AutoTokenizer
|
7 |
|
8 |
README = """
|
9 |
# Movie Review Score Discriminator
|
@@ -19,8 +17,6 @@ learning_rate = 5e-5
|
|
19 |
batch_size_train = 64
|
20 |
step = 1900
|
21 |
|
22 |
-
file_name = "model-{}.pt".format(step)
|
23 |
-
state_dict = torch.load(os.path.join(file_name))
|
24 |
|
25 |
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
|
26 |
label2id = {"NEGATIVE": 0, "POSITIVE": 1}
|
@@ -28,34 +24,20 @@ label2id = {"NEGATIVE": 0, "POSITIVE": 1}
|
|
28 |
|
29 |
title = "Movie Review Score Discriminator"
|
30 |
description = "It is a program that classifies whether it is positive or negative by entering movie reviews. You can choose between the Korean version and the English version."
|
31 |
-
examples = ["the greatest musicians ", "cold movie "]
|
32 |
-
|
33 |
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
truncation=True)
|
42 |
|
43 |
|
44 |
-
def greet(text):
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
47 |
-
model_name, num_labels=2, id2label=id2label, label2id=label2id,
|
48 |
-
state_dict=state_dict
|
49 |
-
)
|
50 |
-
inputs = tokenized_data(tokenizer, text)
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
-
with torch.no_grad():
|
55 |
-
# logits.shape = torch.Size([ batch_size, 2 ])
|
56 |
-
logits = model(input_ids=inputs[0], attention_mask=inputs[1]).logits
|
57 |
-
|
58 |
-
return logits
|
59 |
|
60 |
demo1 = gr.Interface.load("models/cardiffnlp/twitter-roberta-base-sentiment", inputs="text", outputs="text",
|
61 |
title=title, theme="peach",
|
@@ -68,6 +50,15 @@ demo1 = gr.Interface.load("models/cardiffnlp/twitter-roberta-base-sentiment", in
|
|
68 |
# allow_flagging="auto",
|
69 |
# description=description, examples=examples)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
demo3 = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng", inputs="text", outputs="text",
|
73 |
title=title, theme="peach",
|
@@ -75,4 +66,5 @@ demo3 = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng",
|
|
75 |
description=description, examples=examples)
|
76 |
|
77 |
if __name__ == "__main__":
|
|
|
78 |
demo3.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
import random
|
4 |
+
|
|
|
|
|
5 |
|
6 |
README = """
|
7 |
# Movie Review Score Discriminator
|
|
|
17 |
batch_size_train = 64
|
18 |
step = 1900
|
19 |
|
|
|
|
|
20 |
|
21 |
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
|
22 |
label2id = {"NEGATIVE": 0, "POSITIVE": 1}
|
|
|
24 |
|
25 |
title = "Movie Review Score Discriminator"
|
26 |
description = "It is a program that classifies whether it is positive or negative by entering movie reviews. You can choose between the Korean version and the English version."
|
|
|
|
|
27 |
|
28 |
|
29 |
+
imdb_dataset = load_dataset('imdb')
|
30 |
+
examples = []
|
31 |
+
# examples = ["the greatest musicians ", "cold movie "]
|
32 |
+
for i in range(3):
|
33 |
+
idx = random.randrange(len(imdb_dataset['train']))
|
34 |
+
examples.append(imdb_dataset['train'][idx]['text'])
|
|
|
35 |
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
def fn(text):
|
39 |
+
return "hello, " + text
|
40 |
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
demo1 = gr.Interface.load("models/cardiffnlp/twitter-roberta-base-sentiment", inputs="text", outputs="text",
|
43 |
title=title, theme="peach",
|
|
|
50 |
# allow_flagging="auto",
|
51 |
# description=description, examples=examples)
|
52 |
|
53 |
+
here = gr.Interface(fn,
|
54 |
+
inputs= gr.inputs.Textbox( lines=1, placeholder=None, default="", label=None),
|
55 |
+
outputs='text',
|
56 |
+
title="Sentiment analysis of movie reviews",
|
57 |
+
description=description,
|
58 |
+
theme="peach",
|
59 |
+
allow_flagging="auto",
|
60 |
+
flagging_dir='flagging records')
|
61 |
+
|
62 |
|
63 |
demo3 = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng", inputs="text", outputs="text",
|
64 |
title=title, theme="peach",
|
|
|
66 |
description=description, examples=examples)
|
67 |
|
68 |
if __name__ == "__main__":
|
69 |
+
# here.launch()
|
70 |
demo3.launch()
|