Upload app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
README = """
|
4 |
# Movie Review Score Discriminator
|
@@ -9,19 +13,63 @@ README = """
|
|
9 |
"""
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
title = "Movie Review Score Discriminator"
|
13 |
description = "It is a program that classifies whether it is positive or negative by entering movie reviews. You can choose between the Korean version and the English version."
|
14 |
examples = ["the greatest musicians ", "cold movie "]
|
15 |
|
16 |
|
17 |
-
def greet(name):
|
18 |
-
return "Hello " + name + "!"
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
title=title, theme="peach",
|
22 |
allow_flagging="auto",
|
23 |
description=description, examples=examples)
|
24 |
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
if __name__ == "__main__":
|
27 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
|
5 |
+
from transformers import AutoTokenizer
|
6 |
|
7 |
README = """
|
8 |
# Movie Review Score Discriminator
|
|
|
13 |
"""
|
14 |
|
15 |
|
16 |
+
model = "roberta-base"
|
17 |
+
learning_rate = 5e-5
|
18 |
+
batch_size_train = 64
|
19 |
+
step = 1900
|
20 |
+
|
21 |
+
file_name = "model-{}.pt".format(step)
|
22 |
+
state_dict = torch.load(os.path.join(file_name))
|
23 |
+
|
24 |
+
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
|
25 |
+
label2id = {"NEGATIVE": 0, "POSITIVE": 1}
|
26 |
+
|
27 |
+
|
28 |
title = "Movie Review Score Discriminator"
|
29 |
description = "It is a program that classifies whether it is positive or negative by entering movie reviews. You can choose between the Korean version and the English version."
|
30 |
examples = ["the greatest musicians ", "cold movie "]
|
31 |
|
32 |
|
|
|
|
|
33 |
|
34 |
+
def tokenized_data(tokenizer, inputs):
|
35 |
+
return tokenizer.batch_encode_plus(
|
36 |
+
inputs,
|
37 |
+
return_tensors="pt",
|
38 |
+
padding="max_length",
|
39 |
+
max_length=64,
|
40 |
+
truncation=True)
|
41 |
+
|
42 |
+
|
43 |
+
def greet(text):
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
46 |
+
model, num_labels=2, id2label=id2label, label2id=label2id,
|
47 |
+
state_dict=state_dict
|
48 |
+
)
|
49 |
+
inputs = tokenized_data(tokenizer, text)
|
50 |
+
|
51 |
+
|
52 |
+
# 모델의 매개변수 Tensor를 mps Tensor로 변환
|
53 |
+
# model.to(device)
|
54 |
+
# evaluation mode or training mode
|
55 |
+
model.eval()
|
56 |
+
|
57 |
+
with torch.no_grad():
|
58 |
+
# logits.shape = torch.Size([ batch_size, 2 ])
|
59 |
+
logits = model(input_ids=inputs[0], attention_mask=inputs[1]).logits
|
60 |
+
|
61 |
+
return logits
|
62 |
+
|
63 |
+
demo1 = gr.Interface.load("models/cardiffnlp/twitter-roberta-base-sentiment", inputs="text", outputs="text",
|
64 |
title=title, theme="peach",
|
65 |
allow_flagging="auto",
|
66 |
description=description, examples=examples)
|
67 |
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
68 |
+
|
69 |
+
demo2 = gr.Interface(fn=greet, inputs="text", outputs="text",
|
70 |
+
title=title, theme="peach",
|
71 |
+
allow_flagging="auto",
|
72 |
+
description=description, examples=examples)
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
+
demo2.launch()
|