import gradio as gr from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import random import numpy as np import torch id2label = {0: "NEGATIVE", 1: "POSITIVE"} label2id = {"NEGATIVE": 0, "POSITIVE": 1} title = "Movie Review Score Discriminator" description = "It is a program that classifies whether it is positive or negative by entering movie reviews. You can choose between the Korean version and the English version." def tokenized_data(tokenizer, inputs): return tokenizer.batch_encode_plus( [inputs], return_tensors="pt", padding="max_length", max_length=64, truncation=True) examples = [] df = pd.read_csv('examples.csv', sep='\t', index_col='Unnamed: 0') random.seed(100) for i in range(2): idx = random.randint(0, 50) examples.append(['Eng', df.iloc[idx, 0]]) examples.append(['Kor', df.iloc[idx, 1]]) eng_model_name = "roberta-base" eng_step = 1900 eng_tokenizer = AutoTokenizer.from_pretrained(eng_model_name) eng_file_name = "{}-{}.pt".format(eng_model_name, eng_step) eng_state_dict = torch.load(eng_file_name) eng_model = AutoModelForSequenceClassification.from_pretrained( eng_model_name, num_labels=2, id2label=id2label, label2id=label2id, state_dict=eng_state_dict ) kor_model_name = "klue/roberta-small" kor_step = 2400 kor_tokenizer = AutoTokenizer.from_pretrained(kor_model_name) kor_file_name = "{}-{}.pt".format(kor_model_name.replace('/', '_'), kor_step) kor_state_dict = torch.load(kor_file_name) kor_model = AutoModelForSequenceClassification.from_pretrained( kor_model_name, num_labels=2, id2label=id2label, label2id=label2id, state_dict=kor_state_dict ) def builder(lang, text): if lang == 'Eng': model = eng_model tokenizer = eng_tokenizer else: model = kor_model tokenizer = kor_tokenizer inputs = tokenized_data(tokenizer, text) model.eval() with torch.no_grad(): logits = model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']).logits m = torch.nn.Softmax(dim=1) output = m(logits) # print(logits, output) prediction = torch.argmax(logits, axis=1) return {id2label[1]: output[0][1].item(), id2label[0]: output[0][0].item()} return id2label[prediction.item()] demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Eng', 'Kor']), "text"], # outputs=gr.Label(num_top_classes=2), outputs='label', title=title, description=description, examples=examples) # demo3 = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng", inputs="text", outputs="text", # title=title, theme="peach", # allow_flagging="auto", # description=description, examples=examples) output = [] if __name__ == "__main__": # print(examples) demo.launch() # demo3.launch()