File size: 9,963 Bytes
12cca3e 05e0faf 12cca3e 05e0faf 12cca3e 05e0faf 12cca3e f8e7b59 12cca3e f8e7b59 12cca3e f8e7b59 12cca3e f8e7b59 12cca3e f8e7b59 12cca3e f8e7b59 12cca3e 05e0faf 12cca3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# reranks the top articles from a given csv file
# from langchain_openai import ChatOpenAI
# from langchain.chains import RetrievalQA
# from langchain_community.document_loaders.csv_loader import CSVLoader
# from langchain_community.vectorstores import DocArrayInMemorySearch
from sentence_transformers import CrossEncoder
import pandas as pd
import time
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
"""
This function rerank top articles (15 -> 4) from a given csv, then sends to LLM
Input:
csv_path: str
question: str
top_n: int
Output:
response: str
links: list of str
titles: list of str
Other functions in this file does not send articles to LLM. This is an exception.
Created using langchain RAG functions. Deprecated.
Update: Use langchain_RAG instead.
"""
# def langchain_rerank_answer(csv_path, question, source='url', top_n=4):
# llm = ChatOpenAI(temperature=0.0)
# loader = CSVLoader(csv_path, source_column="url")
# index = VectorstoreIndexCreator(
# vectorstore_cls=DocArrayInMemorySearch,
# ).from_loaders([loader])
# # prompt_template = """You are an a chatbot that answers tobacco related questions with source. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
# # {context}
# # Question: {question}"""
# # PROMPT = PromptTemplate(
# # template=prompt_template, input_variables=["context", "question"]
# # )
# # chain_type_kwargs = {"prompt": PROMPT}
# qa = RetrievalQA.from_chain_type(
# llm=llm,
# chain_type="stuff",
# retriever=index.vectorstore.as_retriever(),
# verbose=False,
# return_source_documents=True,
# # chain_type_kwargs=chain_type_kwargs,
# # chain_type_kwargs = {
# # "document_separator": "<<<<>>>>>"
# # },
# )
# answer = qa({"query": question})
# sources = answer['source_documents']
# sources_out = [source.metadata['source'] for source in sources]
# return answer['result'], sources_out
# """
# Langchain with sources.
# This function is deprecated. Use langchain_RAG instead.
# """
# def langchain_with_sources(csv_path, question, top_n=4):
# llm = ChatOpenAI(temperature=0.0)
# loader = CSVLoader(csv_path, source_column="uuid")
# index = VectorstoreIndexCreator(
# vectorstore_cls=DocArrayInMemorySearch,
# ).from_loaders([loader])
# qa = RetrievalQAWithSourcesChain.from_chain_type(
# llm=llm,
# chain_type="stuff",
# retriever=index.vectorstore.as_retriever(),
# )
# output = qa({"question": question}, return_only_outputs=True)
# return output['answer'], output['sources']
# """
# Reranks the top articles using crossencoder.
# Uses cross-encoder/ms-marco-MiniLM-L-6-v2 for embedding / reranking.
# Input:
# csv_path: str
# question: str
# top_n: int
# Output:
# out_values: list of [content, uuid, title]
# """
# returns list of top n similar articles using crossencoder
def crossencoder_rerank_answer(csv_path: str, question: str, top_n=4) -> list:
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
articles = pd.read_csv(csv_path)
contents = articles['content'].tolist()
uuids = articles['uuid'].tolist()
titles = articles['title'].tolist()
published_dates = articles['published_date'].tolist()
# biencoder retrieval does not have domain
if 'domain' not in articles:
domain = [""] * len(contents)
else:
domain = articles['domain'].tolist()
cross_inp = [[question, content] for content in contents]
cross_scores = cross_encoder.predict(cross_inp)
scores_sentences = list(zip(cross_scores, contents, uuids, titles, domain, published_dates))
scores_sentences = sorted(scores_sentences, key=lambda x: x[0], reverse=True)
out_values = scores_sentences[:top_n]
# if score is less than 0, truncate
for idx in range(len(out_values)):
if out_values[idx][0] < 0:
out_values = out_values[:idx]
if len(out_values) == 0:
out_values = scores_sentences[:1]
break
# print(out_values)
return out_values
def crossencoder_rerank_sentencewise(csv_path: str, question: str, top_n=10) -> list:
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
articles = pd.read_csv(csv_path)
contents = articles['content'].tolist()
uuids = articles['uuid'].tolist()
titles = articles['title'].tolist()
published_dates = articles['published_date'].tolist()
if 'domain' not in articles:
domain = [""] * len(contents)
else:
domain = articles['domain'].tolist()
sentences = []
new_uuids = []
new_titles = []
new_domains = []
new_published_dates = []
for idx in range(len(contents)):
sents = sent_tokenize(contents[idx])
sentences.extend(sents)
new_uuids.extend([uuids[idx]] * len(sents))
new_titles.extend([titles[idx]] * len(sents))
new_domains.extend([domain[idx]] * len(sents))
new_published_dates.extend([published_dates[idx]] * len(sents))
cross_inp = [[question, sent] for sent in sentences]
cross_scores = cross_encoder.predict(cross_inp)
scores_sentences = list(zip(cross_scores, sentences, new_uuids, new_titles, new_domains, new_published_dates))
scores_sentences = sorted(scores_sentences, key=lambda x: x[0], reverse=True)
out_values = scores_sentences[:top_n]
# if score is less than 0, truncate
for idx in range(len(out_values)):
if out_values[idx][0] < 0:
out_values = out_values[:idx]
if len(out_values) == 0:
out_values = scores_sentences[:1]
break
return out_values
def crossencoder_rerank_sentencewise_sentence_chunks(csv_path, question, top_n=10, chunk_size=2):
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
articles = pd.read_csv(csv_path)
contents = articles['content'].tolist()
uuids = articles['uuid'].tolist()
titles = articles['title'].tolist()
# embeddings do not have domain as column
if 'domain' not in articles:
domain = [""] * len(contents)
else:
domain = articles['domain'].tolist()
sentences = []
new_uuids = []
new_titles = []
new_domains = []
for idx in range(len(contents)):
sents = sent_tokenize(contents[idx])
sents_merged = []
# if the number of sentences is less than chunk size, merge and join
if len(sents) < chunk_size:
sents_merged.append(' '.join(sents))
else:
for i in range(0, len(sents) - chunk_size + 1):
sents_merged.append(' '.join(sents[i:i + chunk_size]))
sentences.extend(sents_merged)
new_uuids.extend([uuids[idx]] * len(sents_merged))
new_titles.extend([titles[idx]] * len(sents_merged))
new_domains.extend([domain[idx]] * len(sents_merged))
cross_inp = [[question, sent] for sent in sentences]
cross_scores = cross_encoder.predict(cross_inp)
scores_sentences = list(zip(cross_scores, sentences, new_uuids, new_titles, new_domains))
scores_sentences = sorted(scores_sentences, key=lambda x: x[0], reverse=True)
out_values = scores_sentences[:top_n]
for idx in range(len(out_values)):
if out_values[idx][0] < 0:
out_values = out_values[:idx]
if len(out_values) == 0:
out_values = scores_sentences[:1]
break
return out_values
def crossencoder_rerank_sentencewise_articles(csv_path, question, top_n=4):
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
contents, uuids, titles, domain = load_articles(csv_path)
sentences = []
contents_elongated = []
new_uuids = []
new_titles = []
new_domains = []
for idx in range(len(contents)):
sents = sent_tokenize(contents[idx])
sentences.extend(sents)
new_uuids.extend([uuids[idx]] * len(sents))
contents_elongated.extend([contents[idx]] * len(sents))
new_titles.extend([titles[idx]] * len(sents))
new_domains.extend([domain[idx]] * len(sents))
cross_inp = [[question, sent] for sent in sentences]
cross_scores = cross_encoder.predict(cross_inp)
scores_sentences = list(zip(cross_scores, contents_elongated, new_uuids, new_titles, new_domains))
scores_sentences = sorted(scores_sentences, key=lambda x: x[0], reverse=True)
score_sentences_compressed = []
for item in scores_sentences:
if not score_sentences_compressed:
score_sentences_compressed.append(item)
else:
if item[2] not in [x[2] for x in score_sentences_compressed]:
score_sentences_compressed.append(item)
scores_sentences = score_sentences_compressed
return scores_sentences[:top_n]
def no_rerank(csv_path, question, top_n=4):
contents, uuids, titles, domains = load_articles(csv_path)
return list(zip(contents, uuids, titles, domains))[:top_n]
def load_articles(csv_path:str):
articles = pd.read_csv(csv_path)
contents = articles['content'].tolist()
uuids = articles['uuid'].tolist()
titles = articles['title'].tolist()
if 'domain' not in articles:
domain = [""] * len(contents)
else:
domain = articles['domain'].tolist()
return contents, uuids, titles, domain
|