File size: 1,478 Bytes
12cca3e
 
 
 
05e0faf
 
12cca3e
05e0faf
12cca3e
 
 
05e0faf
cde1f49
 
12cca3e
cde1f49
 
 
 
 
12cca3e
 
 
 
 
 
 
5c69ef0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
import pandas as pd
from get_keywords import get_keywords
from get_articles import save_solr_articles_full
# from rerank import langchain_rerank_answer, langchain_with_sources, crossencoder_rerank_answer, \
#     crossencoder_rerank_sentencewise, crossencoder_rerank_sentencewise_articles, no_rerank
#from feed_to_llm import feed_articles_to_gpt_with_links
from rerank import crossencoder_rerank_answer
from feed_to_llm_v2 import feed_articles_to_gpt_with_links

def get_response(question, rerank_type="crossencoder", llm_type="chat"):
    csv_path = save_solr_articles_full(question, keyword_type="rake", num_articles=15)
    reranked_out = crossencoder_rerank_answer(csv_path, question)
    return feed_articles_to_gpt_with_links(reranked_out, question)

    # save_path = save_solr_articles_full(question)
    # information = crossencoder_rerank_answer(save_path, question)
    # response, links, titles = feed_articles_to_gpt_with_links(information, question)
    #
    # return response, links, titles



if __name__ == "__main__":
    question = "How is United States fighting against tobacco addiction?"
    rerank_type = "crossencoder"
    llm_type = "chat"
    response, links, titles, domains, published_dates = get_response(question, rerank_type, llm_type)
    print("Response:", response)
    print("Links:", links)
    print("Titles:", titles)
    print("Domains:", domains)
    print("Published Dates:", published_dates)