vtiyyal1's picture
Upload 2 files
a084a92 verified
raw
history blame
6.15 kB
from pysolr import Solr
import os
import csv
from sentence_transformers import SentenceTransformer, util
import torch
from datetime import datetime
from get_keywords import get_keywords
import os
import re
"""
This function creates top 15 articles from Solr and saves them in a csv file
Input:
query: str
num_articles: int
keyword_type: str (openai, rake, or na)
Output: path to csv file
"""
def sanitize_query(text):
"""Sanitize the query text for Solr."""
# Remove special characters that could break Solr syntax
sanitized = re.sub(r'[[\]{}()*+?\\^|;:!]', ' ', text)
# Normalize whitespace
sanitized = ' '.join(sanitized.split())
return sanitized
def save_solr_articles_full(query: str, num_articles: int, keyword_type: str = "openai") -> str:
try:
keywords = get_keywords(query, keyword_type)
if keyword_type == "na":
keywords = query
# Sanitize keywords before creating Solr query
keywords = sanitize_query(keywords)
return save_solr_articles(keywords, num_articles)
except Exception as e:
raise
"""
Removes spaces and newlines from text
Input: text: str
Output: text: str
"""
def remove_spaces_newlines(text: str) -> str:
text = text.replace('\n', ' ')
text = text.replace(' ', ' ')
return text
# truncates long articles to 1500 words
def truncate_article(text: str) -> str:
split = text.split()
if len(split) > 1500:
split = split[:1500]
text = ' '.join(split)
return text
"""
Searches Solr for articles based on keywords and saves them in a csv file
Input:
keywords: str
num_articles: int
Output: path to csv file
Minor details:
Removes duplicate articles to start with.
Articles with dead urls are removed since those articles are often wierd.
Articles with titles that start with five starting words are removed. they are usually duplicates with minor changes.
If one of title, uuid, cleaned_content, url are missing the article is skipped.
"""
def save_solr_articles(keywords: str, num_articles=15) -> str:
"""Save top articles from Solr search to CSV."""
solr_key = os.getenv("SOLR_KEY")
SOLR_ARTICLES_URL = f"https://website:{solr_key}@solr.machines.globalhealthwatcher.org:8080/solr/articles/"
solr = Solr(SOLR_ARTICLES_URL, verify=False)
# No duplicates
fq = ['-dups:0']
query = f'text:({keywords})' + " AND " + "dead_url:(false)"
# Get top 2*num_articles articles and then remove misformed or duplicate articles
outputs = solr.search(query, fq=fq, sort="score desc", rows=num_articles * 2)
article_count = 0
save_path = os.path.join("data", "articles.csv")
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
with open(save_path, 'w', newline='') as csvfile:
fieldnames = ['title', 'uuid', 'content', 'url', 'domain', 'published_date']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames, quoting=csv.QUOTE_NONNUMERIC)
writer.writeheader()
title_five_words = set()
for d in outputs.docs:
if article_count == num_articles:
break
# skip if title returns a keyerror
if 'title' not in d or 'uuid' not in d or 'cleaned_content' not in d or 'url' not in d:
continue
title_cleaned = remove_spaces_newlines(d['title'])
split = title_cleaned.split()
# skip if title is a duplicate
if not len(split) < 5:
five_words = title_cleaned.split()[:5]
five_words = ' '.join(five_words)
if five_words in title_five_words:
continue
title_five_words.add(five_words)
article_count += 1
cleaned_content = remove_spaces_newlines(d['cleaned_content'])
cleaned_content = truncate_article(cleaned_content)
domain = ""
if 'domain' not in d:
domain = "Not Specified"
else:
domain = d['domain']
raw_date = d.get('year_month_day', "Unknown Date")
# Format the date from YYYY-MM-DD to MM/DD/YYYY if available
if raw_date != "Unknown Date":
try:
publication_date = datetime.strptime(raw_date, "%Y-%m-%d").strftime("%m/%d/%Y")
except ValueError:
publication_date = "Invalid Date"
else:
publication_date = raw_date
writer.writerow({'title': title_cleaned, 'uuid': d['uuid'], 'content': cleaned_content, 'url': d['url'],
'domain': domain, 'published_date': publication_date})
return save_path
def save_embedding_base_articles(query, article_embeddings, titles, contents, uuids, urls, num_articles=15):
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, article_embeddings, top_k=15)
hits = hits[0]
corpus_ids = [item['corpus_id'] for item in hits]
r_contents = [contents[idx] for idx in corpus_ids]
r_titles = [titles[idx] for idx in corpus_ids]
r_uuids = [uuids[idx] for idx in corpus_ids]
r_urls = [urls[idx] for idx in corpus_ids]
save_path = os.path.join("data", "articles.csv")
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
with open(save_path, 'w', newline='', encoding="utf-8") as csvfile:
fieldNames = ['title', 'uuid', 'content', 'url']
writer = csv.DictWriter(csvfile, fieldnames=fieldNames, quoting=csv.QUOTE_NONNUMERIC)
writer.writeheader()
for i in range(num_articles):
writer.writerow({'title': r_titles[i], 'uuid': r_uuids[i], 'content': r_contents[i], 'url': r_urls[i]})
return save_path