Spaces:
Runtime error
Runtime error
File size: 6,899 Bytes
8f69832 b658b84 8f69832 c92a751 8f69832 b658b84 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 6ef300c c92a751 6ef300c c92a751 6ef300c c92a751 6ef300c c92a751 8f69832 c92a751 8f69832 c92a751 9477f68 c92a751 9477f68 c92a751 9477f68 c92a751 9477f68 c92a751 9477f68 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 c92a751 8f69832 c9f2bb9 c92a751 8f69832 c92a751 c853074 c92a751 c853074 c92a751 c853074 c92a751 8f69832 c92a751 c853074 c92a751 6ef300c c92a751 9996fa3 c92a751 9849035 d48129a 8f69832 c92a751 c853074 c92a751 9849035 c92a751 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import time
import math
import random
import csv
from io import BytesIO
import numpy as np
from cairosvg import svg2png
import cv2
import filetype
from filetype.match import image_matchers
from progress.bar import ChargingBar
import imgaug as ia
from imgaug import augmenters as iaa
from imgaug.augmentables.batches import UnnormalizedBatch
from entity import Entity
from common import defaults, mkdir
import imtool
import pipelines
BATCH_SIZE = 16
def process(args):
dest_images_path = os.path.join(args.dest, 'images')
dest_labels_path = os.path.join(args.dest, 'labels')
mkdir.make_dirs([dest_images_path, dest_labels_path])
logo_images = []
logo_alphas = []
logo_labels = {}
db = {}
with open(defaults.MAIN_CSV_PATH, 'r') as f:
reader = csv.DictReader(f)
db = {e.bco: e for e in [Entity.from_dict(d) for d in reader]}
background_images = [d for d in os.scandir(args.backgrounds)]
assert(len(background_images))
stats = {
'failed': 0,
'ok': 0
}
for d in os.scandir(args.logos):
img = None
if not d.is_file():
stats['failed'] += 1
continue
try:
if filetype.match(d.path, matchers=image_matchers):
img = cv2.imread(d.path, cv2.IMREAD_UNCHANGED)
else:
png = svg2png(url=d.path)
img = cv2.imdecode(np.asarray(bytearray(png), dtype=np.uint8), cv2.IMREAD_UNCHANGED)
label = db[d.name.split('.')[0]].id
(h, w, c) = img.shape
if c == 3:
img = imtool.add_alpha(img)
if img.ndim < 3:
print(f'very bad dim: {img.ndim}')
img = imtool.remove_white(img)
(h, w, c) = img.shape
assert(w > 10)
assert(h > 10)
stats['ok'] += 1
(b, g, r, _) = cv2.split(img)
alpha = img[:, :, 3]/255
d = cv2.merge([b, g, r])
logo_images.append(d)
# tried id() tried __array_interface__, tried tagging, nothing works
logo_labels.update({d.tobytes(): label})
# XXX(xaiki): we pass alpha as a float32 heatmap,
# because imgaug is pretty strict about what data it will process
# and that we want the alpha layer to pass the same transformations as the orig
logo_alphas.append(np.dstack((alpha, alpha, alpha)).astype('float32'))
except Exception as e:
stats['failed'] += 1
print(f'error loading: {d.path}: {e}')
print(stats)
#print(len(logo_alphas), len(logo_images), len(logo_labels))
assert(len(logo_alphas) == len(logo_images))
# so that we don't get a lot of the same logos on the same page.
zipped = list(zip(logo_images, logo_alphas))
random.shuffle(zipped)
logo_images, logo_alphas = zip(*zipped)
n = len(logo_images)
batches = []
for i in range(math.floor(n*2/BATCH_SIZE)):
s = (i*BATCH_SIZE)%n
e = min(s + BATCH_SIZE, n)
le = max(0, BATCH_SIZE - (e - s))
a = logo_images[0:le] + logo_images[s:e]
h = logo_alphas[0:le] + logo_alphas[s:e]
assert(len(a) == BATCH_SIZE)
batches.append(UnnormalizedBatch(images=a,heatmaps=h))
bar = ChargingBar('augment', max=(len(batches)**2)/3*len(background_images))
# We use a single, very fast augmenter here to show that batches
# are only loaded once there is space again in the buffer.
pipeline = pipelines.HUGE
def create_generator(lst):
for b in lst:
print(f"Loading next unaugmented batch...")
yield b
batches_generator = create_generator(batches)
batch = 0
with pipeline.pool(processes=-1, seed=1) as pool:
batches_aug = pool.imap_batches(batches_generator, output_buffer_size=5)
print(f"Requesting next augmented batch...{batch}/{len(batches)}")
for i, batch_aug in enumerate(batches_aug):
idx = list(range(len(batch_aug.images_aug)))
random.shuffle(idx)
for j, d in enumerate(background_images):
try:
img = imtool.remove_white(cv2.imread(d.path))
except:
print("couldnt remove white, skipping")
next
basename = d.name.replace('.png', '') + f'.{i}.{j}'
anotations = []
for k in range(math.floor(len(batch_aug.images_aug)/3)):
bar.next()
logo_idx = (j+k*4)%len(batch_aug.images_aug)
orig = batch_aug.images_unaug[logo_idx]
label = logo_labels[orig.tobytes()]
logo = batch_aug.images_aug[logo_idx]
assert(logo.shape == orig.shape)
# XXX(xaiki): we get alpha from heatmap, but will only use one channel
# we could make mix_alpha into mix_mask and pass all 3 chanels
alpha = cv2.split(batch_aug.heatmaps_aug[logo_idx])
try:
bb = imtool.mix_alpha(img, logo, alpha[0],
random.random(), random.random())
c = bb.to_centroid(img.shape)
anotations.append(c.to_anotation(label))
except AssertionError as err:
print(f'couldnt process {i}, {j}: {err}')
except Exception as err:
print(f'error in mix pipeline: {err}')
try:
cv2.imwrite(f'{dest_images_path}/{basename}.png', img)
label_path = f"{dest_labels_path}/{basename}.txt"
with open(label_path, 'a') as f:
f.write('\n'.join(anotations))
except Exception:
print(f'couldnt write image {basename}')
if i < len(batches)-1:
print(f"Requesting next augmented batch...{batch}/{len(batches)}")
batch += 1
bar.finish()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='mix backgrounds and logos into augmented data for YOLO')
parser.add_argument('--logos', metavar='logos', type=str,
default=defaults.LOGOS_DATA_PATH,
help='dir containing logos')
parser.add_argument('--backgrounds', metavar='backgrounds', type=str,
default=defaults.SCREENSHOT_PATH,
help='dir containing background plates')
parser.add_argument('--dst', dest='dest', type=str,
default=defaults.AUGMENTED_DATA_PATH,
help='dest dir')
args = parser.parse_args()
process(args)
|