spoof-detect / python /augment.py
Niv Sardi
augmentor: bugfix, properly convert between bb and centroid
e7640ca
raw
history blame
3.98 kB
import os
import time
import math
import random
from io import BytesIO
import numpy as np
from cairosvg import svg2png
import cv2
import filetype
from filetype.match import image_matchers
import imgaug as ia
from imgaug import augmenters as iaa
from imgaug.augmentables.batches import UnnormalizedBatch
from common import defaults, mkdir
import imtool
import pipelines
BATCH_SIZE = 16
mkdir.make_dirs([defaults.AUGMENTED_IMAGES_PATH, defaults.AUGMENTED_LABELS_PATH])
logo_images = []
logo_alphas = []
background_images = [d for d in os.scandir(defaults.IMAGES_PATH)]
stats = {
'failed': 0,
'ok': 0
}
for d in os.scandir(defaults.LOGOS_DATA_PATH):
img = None
if not d.is_file():
stats['failed'] += 1
continue
try:
if filetype.match(d.path, matchers=image_matchers):
img = cv2.imread(d.path, cv2.IMREAD_UNCHANGED)
else:
png = svg2png(url=d.path)
img = cv2.imdecode(np.asarray(bytearray(png), dtype=np.uint8), cv2.IMREAD_UNCHANGED)
stats['ok'] += 1
(h, w, c) = img.shape
if c == 3:
img = imtool.add_alpha(img)
if img.ndim < 3:
print(f'very bad dim: {img.ndim}')
img = imtool.remove_white(img)
(h, w, c) = img.shape
assert(w > 10)
assert(h > 10)
(b, g, r, _) = cv2.split(img)
alpha = img[:, :, 3]/255
logo_images.append(cv2.merge([b, g, r]))
# XXX(xaiki): we pass alpha as a float32 heatmap, because imgaug is pretty strict about what data it will process
logo_alphas.append(np.dstack((alpha, alpha, alpha)).astype('float32'))
except Exception as e:
stats['failed'] += 1
print(f'error loading: {d.path}: {e}')
print(stats)
batches = [UnnormalizedBatch(images=logo_images[i:i+BATCH_SIZE],heatmaps=logo_alphas[i:i+BATCH_SIZE])
for i in range(math.floor(len(logo_images)/BATCH_SIZE))]
# We use a single, very fast augmenter here to show that batches
# are only loaded once there is space again in the buffer.
pipeline = pipelines.HUGE
def create_generator(lst):
for b in lst:
print(f"Loading next unaugmented batch...")
yield b
batches_generator = create_generator(batches)
with pipeline.pool(processes=-1, seed=1) as pool:
batches_aug = pool.imap_batches(batches_generator, output_buffer_size=5)
print(f"Requesting next augmented batch...")
for i, batch_aug in enumerate(batches_aug):
idx = list(range(len(batch_aug.images_aug)))
random.shuffle(idx)
for j, d in enumerate(background_images):
img = imtool.remove_white(cv2.imread(d.path))
basename = d.name.replace('.png', '') + f'.{i}.{j}'
anotations = []
for k in range(math.floor(len(batch_aug.images_aug)/3)):
logo_idx = (j+k*4)%len(batch_aug.images_aug)
logo = batch_aug.images_aug[logo_idx]
# XXX(xaiki): we get alpha from heatmap, but will only use one channel
# we could make mix_alpha into mix_mask and pass all 3 chanels
alpha = cv2.split(batch_aug.heatmaps_aug[logo_idx])
try:
img, bb, (w, h) = imtool.mix_alpha(img, logo, alpha[0], random.random(), random.random())
c = bb.to_centroid((h, w, 1))
anotations.append(c.to_anotation(0))
except AssertionError as e:
print(f'couldnt process {i}, {j}: {e}')
try:
cv2.imwrite(f'{defaults.AUGMENTED_IMAGES_PATH}/{basename}.png', img)
label_path = f"{defaults.AUGMENTED_LABELS_PATH}/{basename}.txt"
with open(label_path, 'a') as f:
f.write('\n'.join(anotations))
except Exception:
print(f'couldnt write image {basename}')
if i < len(batches)-1:
print("Requesting next augmented batch...")