Spaces:
Runtime error
Runtime error
import os | |
import time | |
import math | |
import random | |
import csv | |
from io import BytesIO | |
import numpy as np | |
from cairosvg import svg2png | |
import cv2 | |
import filetype | |
from filetype.match import image_matchers | |
from progress.bar import ChargingBar | |
import imgaug as ia | |
from imgaug import augmenters as iaa | |
from imgaug.augmentables.batches import UnnormalizedBatch | |
from entity import Entity | |
from common import defaults, mkdir | |
import imtool | |
import pipelines | |
BATCH_SIZE = 16 | |
def process(args): | |
dest_images_path = os.path.join(args.dest, 'images') | |
dest_labels_path = os.path.join(args.dest, 'labels') | |
mkdir.make_dirs([dest_images_path, dest_labels_path]) | |
logo_images = [] | |
logo_alphas = [] | |
logo_labels = {} | |
db = {} | |
with open(defaults.MAIN_CSV_PATH, 'r') as f: | |
reader = csv.DictReader(f) | |
db = {e.bco: e for e in [Entity.from_dict(d) for d in reader]} | |
background_images = [d for d in os.scandir(args.backgrounds)] | |
assert(len(background_images)) | |
stats = { | |
'failed': 0, | |
'ok': 0 | |
} | |
for d in os.scandir(args.logos): | |
img = None | |
if not d.is_file(): | |
stats['failed'] += 1 | |
continue | |
try: | |
if filetype.match(d.path, matchers=image_matchers): | |
img = cv2.imread(d.path, cv2.IMREAD_UNCHANGED) | |
else: | |
png = svg2png(url=d.path) | |
img = cv2.imdecode(np.asarray(bytearray(png), dtype=np.uint8), cv2.IMREAD_UNCHANGED) | |
label = db[d.name.split('.')[0]].id | |
(h, w, c) = img.shape | |
if c == 3: | |
img = imtool.add_alpha(img) | |
if img.ndim < 3: | |
print(f'very bad dim: {img.ndim}') | |
img = imtool.remove_white(img) | |
(h, w, c) = img.shape | |
assert(w > 10) | |
assert(h > 10) | |
stats['ok'] += 1 | |
(b, g, r, _) = cv2.split(img) | |
alpha = img[:, :, 3]/255 | |
d = cv2.merge([b, g, r]) | |
logo_images.append(d) | |
# tried id() tried __array_interface__, tried tagging, nothing works | |
logo_labels.update({d.tobytes(): label}) | |
# XXX(xaiki): we pass alpha as a float32 heatmap, | |
# because imgaug is pretty strict about what data it will process | |
# and that we want the alpha layer to pass the same transformations as the orig | |
logo_alphas.append(np.dstack((alpha, alpha, alpha)).astype('float32')) | |
except Exception as e: | |
stats['failed'] += 1 | |
print(f'error loading: {d.path}: {e}') | |
print(stats) | |
#print(len(logo_alphas), len(logo_images), len(logo_labels)) | |
assert(len(logo_alphas) == len(logo_images)) | |
# so that we don't get a lot of the same logos on the same page. | |
zipped = list(zip(logo_images, logo_alphas)) | |
random.shuffle(zipped) | |
logo_images, logo_alphas = zip(*zipped) | |
n = len(logo_images) | |
batches = [] | |
for i in range(math.floor(n*2/BATCH_SIZE)): | |
s = (i*BATCH_SIZE)%n | |
e = min(s + BATCH_SIZE, n) | |
le = max(0, BATCH_SIZE - (e - s)) | |
a = logo_images[0:le] + logo_images[s:e] | |
h = logo_alphas[0:le] + logo_alphas[s:e] | |
assert(len(a) == BATCH_SIZE) | |
batches.append(UnnormalizedBatch(images=a,heatmaps=h)) | |
bar = ChargingBar('Processing', max=len(batches)) | |
# We use a single, very fast augmenter here to show that batches | |
# are only loaded once there is space again in the buffer. | |
pipeline = pipelines.HUGE | |
def create_generator(lst): | |
for b in lst: | |
print(f"Loading next unaugmented batch...") | |
yield b | |
batches_generator = create_generator(batches) | |
with pipeline.pool(processes=-1, seed=1) as pool: | |
batches_aug = pool.imap_batches(batches_generator, output_buffer_size=5) | |
print(f"Requesting next augmented batch...") | |
for i, batch_aug in enumerate(batches_aug): | |
idx = list(range(len(batch_aug.images_aug))) | |
random.shuffle(idx) | |
for j, d in enumerate(background_images): | |
img = imtool.remove_white(cv2.imread(d.path)) | |
basename = d.name.replace('.png', '') + f'.{i}.{j}' | |
anotations = [] | |
for k in range(math.floor(len(batch_aug.images_aug)/3)): | |
logo_idx = (j+k*4)%len(batch_aug.images_aug) | |
orig = batch_aug.images_unaug[logo_idx] | |
label = logo_labels[orig.tobytes()] | |
logo = batch_aug.images_aug[logo_idx] | |
assert(logo.shape == orig.shape) | |
# XXX(xaiki): we get alpha from heatmap, but will only use one channel | |
# we could make mix_alpha into mix_mask and pass all 3 chanels | |
alpha = cv2.split(batch_aug.heatmaps_aug[logo_idx]) | |
try: | |
bb = imtool.mix_alpha(img, logo, alpha[0], | |
random.random(), random.random()) | |
c = bb.to_centroid(img.shape) | |
anotations.append(c.to_anotation(label)) | |
except AssertionError as e: | |
print(f'couldnt process {i}, {j}: {e}') | |
try: | |
cv2.imwrite(f'{dest_images_path}/{basename}.png', img) | |
label_path = f"{dest_labels_path}/{basename}.txt" | |
with open(label_path, 'a') as f: | |
f.write('\n'.join(anotations)) | |
except Exception: | |
print(f'couldnt write image {basename}') | |
if i < len(batches)-1: | |
print("Requesting next augmented batch...") | |
bar.next() | |
bar.finish() | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser(description='mix backgrounds and logos into augmented data for YOLO') | |
parser.add_argument('--logos', metavar='logos', type=str, | |
default=defaults.LOGOS_DATA_PATH, | |
help='dir containing logos') | |
parser.add_argument('--backgrounds', metavar='backgrounds', type=str, | |
default=defaults.IMAGES_PATH, | |
help='dir containing background plates') | |
parser.add_argument('--dst', dest='dest', type=str, | |
default=defaults.AUGMENTED_DATA_PATH, | |
help='dest dir') | |
args = parser.parse_args() | |
process(args) | |