File size: 6,027 Bytes
a1074ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import streamlit as st
from PIL import Image
import torch
from RealESRGAN import RealESRGAN
from io import BytesIO
import base64
import streamlit.components.v1 as components

# Function to load the model based on scale and anime toggle
def load_model(scale, anime=False):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = RealESRGAN(device, scale=scale, anime=anime)
    model_path = {
        (2, False): 'model/RealESRGAN_x2.pth',
        (4, False): 'model/RealESRGAN_x4plus.pth',
        (8, False): 'model/RealESRGAN_x8.pth',
        (4, True): 'model/RealESRGAN_x4plus_anime_6B.pth'
    }[(scale, anime)]
    model.load_weights(model_path)
    return model

def enhance_image(image, scale, anime):
    model = load_model(scale, anime=anime)
    sr_image = model.predict(image)
    
    buffer = BytesIO()
    sr_image.save(buffer, format="PNG")
    buffer.seek(0)
    return sr_image, buffer

def get_base64_image(image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode()

def image_comparison_slider(original_base64, enhanced_base64):
    slider_html = f"""
    <style>

    .img-comp-container {{

        position: relative;

        width: 100%;

        max-width: 800px;

        margin: auto;

    }}

    .img-comp-img {{

        position: absolute;

        width: 100%;

        height: 100%;

        overflow: hidden;

    }}

    .img-comp-img img {{

        width: 100%;

        height: auto;

        display: block;

    }}

    .img-comp-overlay {{

        position: absolute;

        top: 0;

        left: 0;

        width: 50%; /* Start at 50% for better default view */

        height: 100%;

        overflow: hidden;

        background-color: rgba(0,0,0,0.5);

        transition: 0.4s;

    }}

    .img-comp-slider {{

        position: absolute;

        cursor: ew-resize;

        width: 40px;

        height: 40px;

        background-color: #2196F3;

        border-radius: 50%;

        transform: translateY(-50%);

        top: 50%;

        left: 50%;

        margin-left: -20px;

        margin-top: -20px;

        z-index: 9;

        opacity: 0.7;

        transition: 0.3s;

    }}

    .img-comp-slider:hover {{

        opacity: 1;

    }}

    </style>
    <div class="img-comp-container">
        <div class="img-comp-img">
            <img src="data:image/png;base64,{original_base64}" />
        </div>
        <div class="img-comp-img">
            <img src="data:image/png;base64,{enhanced_base64}" />
        </div>
        <div class="img-comp-overlay"></div>
        <div class="img-comp-slider"></div>
    </div>
    <script>

    function initComparisons() {{

        var x, i;

        x = document.getElementsByClassName("img-comp-container");

        for (i = 0; i < x.length; i++) {{

            compareImages(x[i]);

        }}

        function compareImages(img) {{

            var slider, overlay, clicked = 0, w, h;

            w = img.offsetWidth;

            h = img.offsetHeight;

            slider = img.getElementsByClassName("img-comp-slider")[0];

            overlay = img.getElementsByClassName("img-comp-overlay")[0];

            img.addEventListener("mousemove", slide);

            img.addEventListener("touchmove", slide);

            img.addEventListener("mousedown", setActive);

            window.addEventListener("mouseup", removeActive);

            function slide(e) {{

                if (clicked === 0) return false;

                e.preventDefault();

                var pos = getCursorPos(e);

                if (pos.x > w) pos.x = w;

                if (pos.x < 0) pos.x = 0;

                slider.style.left = pos.x + "px";

                overlay.style.width = pos.x + "px";

            }}

            function getCursorPos(e) {{

                var a, x = 0;

                e = (e.changedTouches) ? e.changedTouches[0] : e;

                a = img.getBoundingClientRect();

                x = e.pageX - a.left;

                x = x - window.pageXOffset;

                return {{ x: x }};

            }}

            function setActive(e) {{

                clicked = 1;

                e.preventDefault();

            }}

            function removeActive() {{

                clicked = 0;

            }}

        }}

    }}

    initComparisons();

    </script>
    """
    components.html(slider_html, height=600, scrolling=True)



def main():
    st.title("Generative AI Image Restoration")

    # Image upload
    uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
    
    if uploaded_image is not None:
        image = Image.open(uploaded_image)
        st.image(image, caption="Original Image", use_column_width=True)
        
        # Anime toggle
        anime = st.checkbox("Anime Image", value=False)
        
        # Conditional scale options
        if anime:
            scale = "4x"  # Set to 4x automatically when anime is selected
        else:
            scale = st.radio("Upscaling Factor", ["2x", "4x", "8x"], index=0)
        
        scale_value = int(scale.replace('x', ''))
        
        # Enhance button
        if st.button("Restore Image"):
            enhanced_image, buffer = enhance_image(image, scale_value, anime)
            
            # Convert images to base64 for comparison slider
            original_base64 = get_base64_image(image)
            enhanced_base64 = get_base64_image(enhanced_image)
            
            # Show comparison slider
            image_comparison_slider(original_base64, enhanced_base64)
            
            # Download button
            st.download_button(
                label="Download Enhanced Image",
                data=buffer,
                file_name="enhanced_image.png",
                mime="image/png"
            )

if __name__ == "__main__":
    main()