Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
from huggingface_hub import from_pretrained_keras | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from keras.layers import TFSMLayer | |
import numpy as np | |
# Download the model | |
model_path = hf_hub_download("keras-io/mobile-vit-xxs") | |
# Load the model using TFSMLayer | |
model = TFSMLayer(model_path, call_endpoint='serving_default') | |
''' model = from_pretrained_keras("keras-io/mobile-vit-xxs") | |
''' | |
classes=['dandelion','daisy','tulips','sunflower','rose'] | |
image_size = 256 | |
def classify_images(image): | |
image = tf.convert_to_tensor(image) | |
image = tf.image.resize(image, (image_size, image_size)) | |
image = tf.expand_dims(image,axis=0) | |
prediction = model.predict(image) | |
prediction = tf.squeeze(tf.round(prediction)) | |
text_output = str(f'{classes[(np.argmax(prediction))]}!') | |
return text_output | |
i = gr.inputs.Image() | |
o = gr.outputs.Textbox() | |
examples = [["./examples/tulip.jpg"], ["./examples/daisy.jpg"], ["./examples/dandelion.jpg"], ["./examples/rose.jpg"], ["./examples/sunflower.jpg"]] | |
title = "Flower Recognition Using Transfer Learning" | |
description = "Upload an image or Select from the examples below to classify flowers: " | |
article = "<div style='text-align: center;'><a href='https://www.linkedin.com/in/suryakiran-mg/' target='_blank'> Space by Suryakiran </a></div>" | |
gr.Interface(classify_images, i, o, allow_flagging=False, analytics_enabled=False, | |
title=title, examples=examples, description=description, article=article).launch(enable_queue=True) | |