|
import logging |
|
import pprint |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
logging.getLogger("openai").setLevel(logging.WARNING) |
|
|
|
from src.backend.run_eval_suite_lighteval import run_evaluation |
|
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request |
|
from src.backend.sort_queue import sort_models_by_priority |
|
|
|
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, LIMIT, TOKEN, ACCELERATOR, VENDOR, REGION |
|
from src.about import TASKS_LIGHTEVAL |
|
|
|
logging.basicConfig(level=logging.ERROR) |
|
pp = pprint.PrettyPrinter(width=80) |
|
|
|
PENDING_STATUS = "PENDING" |
|
RUNNING_STATUS = "RUNNING" |
|
FINISHED_STATUS = "FINISHED" |
|
FAILED_STATUS = "FAILED" |
|
|
|
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) |
|
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) |
|
|
|
def run_auto_eval(): |
|
current_pending_status = [PENDING_STATUS] |
|
|
|
|
|
|
|
check_completed_evals( |
|
api=API, |
|
checked_status=RUNNING_STATUS, |
|
completed_status=FINISHED_STATUS, |
|
failed_status=FAILED_STATUS, |
|
hf_repo=QUEUE_REPO, |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND, |
|
hf_repo_results=RESULTS_REPO, |
|
local_dir_results=EVAL_RESULTS_PATH_BACKEND |
|
) |
|
|
|
|
|
eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) |
|
|
|
eval_requests = sort_models_by_priority(api=API, models=eval_requests) |
|
|
|
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") |
|
|
|
if len(eval_requests) == 0: |
|
return |
|
|
|
eval_request = eval_requests[0] |
|
pp.pprint(eval_request) |
|
|
|
set_eval_request( |
|
api=API, |
|
eval_request=eval_request, |
|
set_to_status=RUNNING_STATUS, |
|
hf_repo=QUEUE_REPO, |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND, |
|
) |
|
|
|
|
|
|
|
instance_size, instance_type = "small", "g4dn.xlarge" |
|
|
|
run_evaluation( |
|
eval_request=eval_request, |
|
task_names=TASKS_LIGHTEVAL, |
|
local_dir=EVAL_RESULTS_PATH_BACKEND, |
|
batch_size=1, |
|
accelerator=ACCELERATOR, |
|
region=REGION, |
|
vendor=VENDOR, |
|
instance_size=instance_size, |
|
instance_type=instance_type, |
|
limit=LIMIT |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
run_auto_eval() |