added rmvpe infer pipelines
Browse files- vc_infer_pipeline.py +234 -19
vc_infer_pipeline.py
CHANGED
@@ -1,11 +1,16 @@
|
|
1 |
-
import numpy as np, parselmouth, torch, pdb
|
2 |
from time import time as ttime
|
3 |
import torch.nn.functional as F
|
|
|
|
|
4 |
import scipy.signal as signal
|
5 |
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
6 |
from scipy import signal
|
7 |
from functools import lru_cache
|
8 |
|
|
|
|
|
|
|
9 |
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
10 |
|
11 |
input_audio_path2wav = {}
|
@@ -66,6 +71,186 @@ class VC(object):
|
|
66 |
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
67 |
self.device = config.device
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def get_f0(
|
70 |
self,
|
71 |
input_audio_path,
|
@@ -74,6 +259,7 @@ class VC(object):
|
|
74 |
f0_up_key,
|
75 |
f0_method,
|
76 |
filter_radius,
|
|
|
77 |
inp_f0=None,
|
78 |
):
|
79 |
global input_audio_path2wav
|
@@ -103,27 +289,53 @@ class VC(object):
|
|
103 |
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
104 |
if filter_radius > 2:
|
105 |
f0 = signal.medfilt(f0, 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
elif f0_method == "crepe":
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
f0_min,
|
117 |
f0_max,
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
)
|
123 |
-
|
124 |
-
f0 = torchcrepe.filter.mean(f0, 3)
|
125 |
-
f0[pd < 0.1] = 0
|
126 |
-
f0 = f0[0].cpu().numpy()
|
127 |
f0 *= pow(2, f0_up_key / 12)
|
128 |
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
129 |
tf0 = self.sr // self.window # 每秒f0点数
|
@@ -147,6 +359,7 @@ class VC(object):
|
|
147 |
f0_mel[f0_mel <= 1] = 1
|
148 |
f0_mel[f0_mel > 255] = 255
|
149 |
f0_coarse = np.rint(f0_mel).astype(np.int)
|
|
|
150 |
return f0_coarse, f0bak # 1-0
|
151 |
|
152 |
def vc(
|
@@ -271,6 +484,7 @@ class VC(object):
|
|
271 |
rms_mix_rate,
|
272 |
version,
|
273 |
protect,
|
|
|
274 |
f0_file=None,
|
275 |
):
|
276 |
if (
|
@@ -332,6 +546,7 @@ class VC(object):
|
|
332 |
f0_up_key,
|
333 |
f0_method,
|
334 |
filter_radius,
|
|
|
335 |
inp_f0,
|
336 |
)
|
337 |
pitch = pitch[:p_len]
|
@@ -428,4 +643,4 @@ class VC(object):
|
|
428 |
del pitch, pitchf, sid
|
429 |
if torch.cuda.is_available():
|
430 |
torch.cuda.empty_cache()
|
431 |
-
return audio_opt
|
|
|
1 |
+
import numpy as np, parselmouth, torch, pdb, sys, os
|
2 |
from time import time as ttime
|
3 |
import torch.nn.functional as F
|
4 |
+
import torchcrepe # Fork feature. Use the crepe f0 algorithm. New dependency (pip install torchcrepe)
|
5 |
+
from torch import Tensor
|
6 |
import scipy.signal as signal
|
7 |
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
8 |
from scipy import signal
|
9 |
from functools import lru_cache
|
10 |
|
11 |
+
now_dir = os.getcwd()
|
12 |
+
sys.path.append(now_dir)
|
13 |
+
|
14 |
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
15 |
|
16 |
input_audio_path2wav = {}
|
|
|
71 |
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
72 |
self.device = config.device
|
73 |
|
74 |
+
# Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
|
75 |
+
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
76 |
+
# Get cuda device
|
77 |
+
if torch.cuda.is_available():
|
78 |
+
return torch.device(
|
79 |
+
f"cuda:{index % torch.cuda.device_count()}"
|
80 |
+
) # Very fast
|
81 |
+
elif torch.backends.mps.is_available():
|
82 |
+
return torch.device("mps")
|
83 |
+
# Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
|
84 |
+
# Else wise return the "cpu" as a torch device,
|
85 |
+
return torch.device("cpu")
|
86 |
+
|
87 |
+
# Fork Feature: Compute f0 with the crepe method
|
88 |
+
def get_f0_crepe_computation(
|
89 |
+
self,
|
90 |
+
x,
|
91 |
+
f0_min,
|
92 |
+
f0_max,
|
93 |
+
p_len,
|
94 |
+
hop_length=160, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
|
95 |
+
model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
|
96 |
+
):
|
97 |
+
x = x.astype(
|
98 |
+
np.float32
|
99 |
+
) # fixes the F.conv2D exception. We needed to convert double to float.
|
100 |
+
x /= np.quantile(np.abs(x), 0.999)
|
101 |
+
torch_device = self.get_optimal_torch_device()
|
102 |
+
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
103 |
+
audio = torch.unsqueeze(audio, dim=0)
|
104 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
105 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
106 |
+
audio = audio.detach()
|
107 |
+
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
108 |
+
pitch: Tensor = torchcrepe.predict(
|
109 |
+
audio,
|
110 |
+
self.sr,
|
111 |
+
hop_length,
|
112 |
+
f0_min,
|
113 |
+
f0_max,
|
114 |
+
model,
|
115 |
+
batch_size=hop_length * 2,
|
116 |
+
device=torch_device,
|
117 |
+
pad=True,
|
118 |
+
)
|
119 |
+
p_len = p_len or x.shape[0] // hop_length
|
120 |
+
# Resize the pitch for final f0
|
121 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
122 |
+
source[source < 0.001] = np.nan
|
123 |
+
target = np.interp(
|
124 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
125 |
+
np.arange(0, len(source)),
|
126 |
+
source,
|
127 |
+
)
|
128 |
+
f0 = np.nan_to_num(target)
|
129 |
+
return f0 # Resized f0
|
130 |
+
|
131 |
+
def get_f0_official_crepe_computation(
|
132 |
+
self,
|
133 |
+
x,
|
134 |
+
f0_min,
|
135 |
+
f0_max,
|
136 |
+
model="full",
|
137 |
+
):
|
138 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
139 |
+
batch_size = 512
|
140 |
+
# Compute pitch using first gpu
|
141 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
142 |
+
f0, pd = torchcrepe.predict(
|
143 |
+
audio,
|
144 |
+
self.sr,
|
145 |
+
self.window,
|
146 |
+
f0_min,
|
147 |
+
f0_max,
|
148 |
+
model,
|
149 |
+
batch_size=batch_size,
|
150 |
+
device=self.device,
|
151 |
+
return_periodicity=True,
|
152 |
+
)
|
153 |
+
pd = torchcrepe.filter.median(pd, 3)
|
154 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
155 |
+
f0[pd < 0.1] = 0
|
156 |
+
f0 = f0[0].cpu().numpy()
|
157 |
+
return f0
|
158 |
+
|
159 |
+
# Fork Feature: Compute pYIN f0 method
|
160 |
+
def get_f0_pyin_computation(self, x, f0_min, f0_max):
|
161 |
+
y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
|
162 |
+
f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
|
163 |
+
f0 = f0[1:] # Get rid of extra first frame
|
164 |
+
return f0
|
165 |
+
|
166 |
+
# Fork Feature: Acquire median hybrid f0 estimation calculation
|
167 |
+
def get_f0_hybrid_computation(
|
168 |
+
self,
|
169 |
+
methods_str,
|
170 |
+
input_audio_path,
|
171 |
+
x,
|
172 |
+
f0_min,
|
173 |
+
f0_max,
|
174 |
+
p_len,
|
175 |
+
filter_radius,
|
176 |
+
crepe_hop_length,
|
177 |
+
time_step,
|
178 |
+
):
|
179 |
+
# Get various f0 methods from input to use in the computation stack
|
180 |
+
s = methods_str
|
181 |
+
s = s.split("hybrid")[1]
|
182 |
+
s = s.replace("[", "").replace("]", "")
|
183 |
+
methods = s.split("+")
|
184 |
+
f0_computation_stack = []
|
185 |
+
|
186 |
+
print("Calculating f0 pitch estimations for methods: %s" % str(methods))
|
187 |
+
x = x.astype(np.float32)
|
188 |
+
x /= np.quantile(np.abs(x), 0.999)
|
189 |
+
# Get f0 calculations for all methods specified
|
190 |
+
for method in methods:
|
191 |
+
f0 = None
|
192 |
+
if method == "pm":
|
193 |
+
f0 = (
|
194 |
+
parselmouth.Sound(x, self.sr)
|
195 |
+
.to_pitch_ac(
|
196 |
+
time_step=time_step / 1000,
|
197 |
+
voicing_threshold=0.6,
|
198 |
+
pitch_floor=f0_min,
|
199 |
+
pitch_ceiling=f0_max,
|
200 |
+
)
|
201 |
+
.selected_array["frequency"]
|
202 |
+
)
|
203 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
204 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
205 |
+
f0 = np.pad(
|
206 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
207 |
+
)
|
208 |
+
elif method == "crepe":
|
209 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
|
210 |
+
f0 = f0[1:] # Get rid of extra first frame
|
211 |
+
elif method == "crepe-tiny":
|
212 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
|
213 |
+
f0 = f0[1:] # Get rid of extra first frame
|
214 |
+
elif method == "mangio-crepe":
|
215 |
+
f0 = self.get_f0_crepe_computation(
|
216 |
+
x, f0_min, f0_max, p_len, crepe_hop_length
|
217 |
+
)
|
218 |
+
elif method == "mangio-crepe-tiny":
|
219 |
+
f0 = self.get_f0_crepe_computation(
|
220 |
+
x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
|
221 |
+
)
|
222 |
+
elif method == "harvest":
|
223 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
224 |
+
if filter_radius > 2:
|
225 |
+
f0 = signal.medfilt(f0, 3)
|
226 |
+
f0 = f0[1:] # Get rid of first frame.
|
227 |
+
elif method == "dio": # Potentially buggy?
|
228 |
+
f0, t = pyworld.dio(
|
229 |
+
x.astype(np.double),
|
230 |
+
fs=self.sr,
|
231 |
+
f0_ceil=f0_max,
|
232 |
+
f0_floor=f0_min,
|
233 |
+
frame_period=10,
|
234 |
+
)
|
235 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
236 |
+
f0 = signal.medfilt(f0, 3)
|
237 |
+
f0 = f0[1:]
|
238 |
+
# elif method == "pyin": Not Working just yet
|
239 |
+
# f0 = self.get_f0_pyin_computation(x, f0_min, f0_max)
|
240 |
+
# Push method to the stack
|
241 |
+
f0_computation_stack.append(f0)
|
242 |
+
|
243 |
+
for fc in f0_computation_stack:
|
244 |
+
print(len(fc))
|
245 |
+
|
246 |
+
print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
|
247 |
+
f0_median_hybrid = None
|
248 |
+
if len(f0_computation_stack) == 1:
|
249 |
+
f0_median_hybrid = f0_computation_stack[0]
|
250 |
+
else:
|
251 |
+
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
|
252 |
+
return f0_median_hybrid
|
253 |
+
|
254 |
def get_f0(
|
255 |
self,
|
256 |
input_audio_path,
|
|
|
259 |
f0_up_key,
|
260 |
f0_method,
|
261 |
filter_radius,
|
262 |
+
crepe_hop_length,
|
263 |
inp_f0=None,
|
264 |
):
|
265 |
global input_audio_path2wav
|
|
|
289 |
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
290 |
if filter_radius > 2:
|
291 |
f0 = signal.medfilt(f0, 3)
|
292 |
+
elif f0_method == "dio": # Potentially Buggy?
|
293 |
+
f0, t = pyworld.dio(
|
294 |
+
x.astype(np.double),
|
295 |
+
fs=self.sr,
|
296 |
+
f0_ceil=f0_max,
|
297 |
+
f0_floor=f0_min,
|
298 |
+
frame_period=10,
|
299 |
+
)
|
300 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
301 |
+
f0 = signal.medfilt(f0, 3)
|
302 |
elif f0_method == "crepe":
|
303 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
|
304 |
+
elif f0_method == "crepe-tiny":
|
305 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
|
306 |
+
elif f0_method == "mangio-crepe":
|
307 |
+
f0 = self.get_f0_crepe_computation(
|
308 |
+
x, f0_min, f0_max, p_len, crepe_hop_length
|
309 |
+
)
|
310 |
+
elif f0_method == "mangio-crepe-tiny":
|
311 |
+
f0 = self.get_f0_crepe_computation(
|
312 |
+
x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
|
313 |
+
)
|
314 |
+
elif f0_method == "rmvpe":
|
315 |
+
if hasattr(self, "model_rmvpe") == False:
|
316 |
+
from rmvpe import RMVPE
|
317 |
+
|
318 |
+
print("loading rmvpe model")
|
319 |
+
self.model_rmvpe = RMVPE(
|
320 |
+
"rmvpe.pt", is_half=self.is_half, device=self.device
|
321 |
+
)
|
322 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
323 |
+
|
324 |
+
elif "hybrid" in f0_method:
|
325 |
+
# Perform hybrid median pitch estimation
|
326 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
327 |
+
f0 = self.get_f0_hybrid_computation(
|
328 |
+
f0_method,
|
329 |
+
input_audio_path,
|
330 |
+
x,
|
331 |
f0_min,
|
332 |
f0_max,
|
333 |
+
p_len,
|
334 |
+
filter_radius,
|
335 |
+
crepe_hop_length,
|
336 |
+
time_step,
|
337 |
)
|
338 |
+
|
|
|
|
|
|
|
339 |
f0 *= pow(2, f0_up_key / 12)
|
340 |
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
341 |
tf0 = self.sr // self.window # 每秒f0点数
|
|
|
359 |
f0_mel[f0_mel <= 1] = 1
|
360 |
f0_mel[f0_mel > 255] = 255
|
361 |
f0_coarse = np.rint(f0_mel).astype(np.int)
|
362 |
+
|
363 |
return f0_coarse, f0bak # 1-0
|
364 |
|
365 |
def vc(
|
|
|
484 |
rms_mix_rate,
|
485 |
version,
|
486 |
protect,
|
487 |
+
crepe_hop_length,
|
488 |
f0_file=None,
|
489 |
):
|
490 |
if (
|
|
|
546 |
f0_up_key,
|
547 |
f0_method,
|
548 |
filter_radius,
|
549 |
+
crepe_hop_length,
|
550 |
inp_f0,
|
551 |
)
|
552 |
pitch = pitch[:p_len]
|
|
|
643 |
del pitch, pitchf, sid
|
644 |
if torch.cuda.is_available():
|
645 |
torch.cuda.empty_cache()
|
646 |
+
return audio_opt
|