File size: 16,697 Bytes
bf97eb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import csv
import linecache
import pickle
import random
import subprocess

import numpy as np
import redis
import torch
import logging
import ast

from datasets import Dataset
from tqdm import tqdm

from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, roc_auc_score, roc_curve, auc
from torch.utils.data import DataLoader
from transformers import AutoModel, DataCollatorWithPadding, XLNetTokenizer, XLNetTokenizerFast, AutoTokenizer, \
    XLNetModel, is_torch_tpu_available

logger = logging.getLogger("lwat")


class MimicIIIDataset(Dataset):
    def __init__(self, data):
        self.input_ids = data["input_ids"]
        self.attention_mask = data["attention_mask"]
        self.token_type_ids = data["token_type_ids"]
        self.labels = data["targets"]

    def __len__(self):
        return len(self.input_ids)

    def __getitem__(self, item):
        return {
            "input_ids": torch.tensor(self.input_ids[item], dtype=torch.long),
            "attention_mask": torch.tensor(self.attention_mask[item], dtype=torch.float),
            "token_type_ids": torch.tensor(self.token_type_ids[item], dtype=torch.long),
            "targets": torch.tensor(self.labels[item], dtype=torch.float)
        }

class LazyMimicIIIDataset(Dataset):
    def __init__(self, filename, task, dataset_type):
        print("lazy load from {}".format(filename))
        self.filename = filename
        self.redis = redis.Redis(unix_socket_path="/tmp/redis.sock")
        self.pipe = self.redis.pipeline()
        self.num_examples = 0
        self.task = task
        self.dataset_type = dataset_type
        with open(filename, 'r') as f:
            for line_num, line in enumerate(f.readlines()):
                self.num_examples += 1
                example = eval(line)
                key = task + '_' + dataset_type + '_' + str(line_num)
                input_ids = eval(example[0])
                attention_mask = eval(example[1])
                token_type_ids = eval(example[2])
                labels = eval(example[3])
                example_tuple = (input_ids, attention_mask, token_type_ids, labels)

                self.pipe.set(key, pickle.dumps(example_tuple))
                if line_num % 100 == 0:
                    self.pipe.execute()
            self.pipe.execute()
        if is_torch_tpu_available():
            import torch_xla.core.xla_model as xm
            xm.rendezvous(tag="featuresGenerated")

    def __len__(self):
        return self.num_examples

    def __getitem__(self, item):
        key = self.task + '_' + self.dataset_type + '_' + str(item)
        example = pickle.loads(self.redis.get(key))

        return {
            "input_ids": torch.tensor(example[0], dtype=torch.long),
            "attention_mask": torch.tensor(example[1], dtype=torch.float),
            "token_type_ids": torch.tensor(example[2], dtype=torch.long),
            "targets": torch.tensor(example[3], dtype=torch.float)
        }


class ICDCodeDataset(Dataset):
    def __init__(self, data):
        self.input_ids = data["input_ids"]
        self.attention_mask = data["attention_mask"]
        self.token_type_ids = data["token_type_ids"]

    def __len__(self):
        return len(self.input_ids)

    def __getitem__(self, item):
        return {
            "input_ids": torch.tensor(self.input_ids[item], dtype=torch.long),
            "attention_mask": torch.tensor(self.attention_mask[item], dtype=torch.float),
            "token_type_ids": torch.tensor(self.token_type_ids[item], dtype=torch.long)
        }


def set_random_seed(random_seed):
    random.seed(random_seed)
    np.random.seed(random_seed)
    torch.manual_seed(random_seed)
    torch.cuda.manual_seed_all(random_seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

def tokenize_inputs(text_list, tokenizer, max_seq_len=512):
    """
    Tokenizes the input text input into ids. Appends the appropriate special
    characters to the end of the text to denote end of sentence. Truncate or pad
    the appropriate sequence length.
    """
    # tokenize the text, then truncate sequence to the desired length minus 2 for
    # the 2 special characters
    tokenized_texts = list(map(lambda t: tokenizer.tokenize(t)[:max_seq_len - 2], text_list))
    # convert tokenized text into numeric ids for the appropriate LM
    input_ids = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts]
    # get token type for token_ids_0
    token_type_ids = [tokenizer.create_token_type_ids_from_sequences(x) for x in input_ids]
    # append special token to end of sentence: <sep> <cls>
    input_ids = [tokenizer.build_inputs_with_special_tokens(x) for x in input_ids]
    # attention mask
    attention_mask = [[1] * len(x) for x in input_ids]

    # padding to max_length
    def padding_to_max(sequence, value):
        padding_len = max_seq_len - len(sequence)
        padding = [value] * padding_len
        return sequence + padding

    input_ids = [padding_to_max(x, tokenizer.pad_token_id) for x in input_ids]
    attention_mask = [padding_to_max(x, 0) for x in attention_mask]
    token_type_ids = [padding_to_max(x, tokenizer.pad_token_type_id) for x in token_type_ids]

    return input_ids, attention_mask, token_type_ids


def tokenize_dataset(tokenizer, text, labels, max_seq_len):
    if (isinstance(tokenizer, XLNetTokenizer) or isinstance(tokenizer, XLNetTokenizerFast)):
        data = list(map(lambda t: tokenize_inputs(t, tokenizer, max_seq_len=max_seq_len), text))
        input_ids, attention_mask, token_type_ids = zip(*data)
    else:
        tokenizer.model_max_length = max_seq_len
        input_dict = tokenizer(text, padding=True, truncation=True)
        input_ids = input_dict["input_ids"]
        attention_mask = input_dict["attention_mask"]
        token_type_ids = input_dict["token_type_ids"]

    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "token_type_ids": token_type_ids,
        "targets": labels
    }


def initial_code_title_vectors(label_dict, transformer_model_name, tokenizer_name, code_max_seq_length, code_batch_size,
                               d_model, device):
    logger.info("Generate code title representations from base transformer model")
    model = AutoModel.from_pretrained(transformer_model_name)
    if isinstance(model, XLNetModel):
        model.config.use_mems_eval = False
    #
    # model.config.use_mems_eval = False
    # model.config.reuse_len = 0
    code_titles = label_dict["long_title"].fillna("").tolist()
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, padding_side="right")
    data = tokenizer(code_titles, padding=True, truncation=True)
    code_dataset = ICDCodeDataset(data)

    model.to(device)

    data_collator = DataCollatorWithPadding(tokenizer, padding="max_length",
                                            max_length=code_max_seq_length)
    code_param = {"batch_size": code_batch_size, "collate_fn": data_collator}
    code_dataloader = DataLoader(code_dataset, **code_param)

    code_dataloader_progress_bar = tqdm(code_dataloader, unit="batches",
                                        desc="Code title representations")
    code_dataloader_progress_bar.clear()

    # output shape: (num_labels, hidden_size)
    initial_code_vectors = torch.zeros(len(code_dataset), d_model)

    for i, data in enumerate(code_dataloader_progress_bar):
        input_ids = data["input_ids"].to(device, dtype=torch.long)
        attention_mask = data["attention_mask"].to(device, dtype=torch.float)
        token_type_ids = data["token_type_ids"].to(device, dtype=torch.long)

        # output shape: (batch_size, sequence_length, hidden_size)
        output = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
        # Mean pooling. output shape: (batch_size, hidden_size)
        mean_last_hidden_state = torch.mean(output[0], 1)
        # Max pooling. output shape: (batch_size, hidden_size)
        # max_last_hidden_state = torch.max((output[0] * attention_mask.unsqueeze(-1)), 1)[0]

        initial_code_vectors[i * input_ids.shape[0]:(i + 1) * input_ids.shape[0], :] = mean_last_hidden_state

    code_dataloader_progress_bar.refresh(True)
    code_dataloader_progress_bar.clear(True)
    code_dataloader_progress_bar.close()
    logger.info("Code representations ready for use. Shape {}".format(initial_code_vectors.shape))
    return initial_code_vectors


def normalise_labels(labels, n_label):
    norm_labels = []
    for label in labels:
        one_hot_vector_label = [0] * n_label
        one_hot_vector_label[label] = 1
        norm_labels.append(one_hot_vector_label)
    return np.asarray(norm_labels)


def segment_tokenize_inputs(text, tokenizer, max_seq_len, num_chunks):
    # input is full text of one document
    tokenized_texts = []
    tokens = tokenizer.tokenize(text)
    start_idx = 0
    seq_len = max_seq_len - 2
    for i in range(num_chunks):
        if start_idx > len(tokens):
            tokenized_texts.append([])
            continue
        tokenized_texts.append(tokens[start_idx:(start_idx + seq_len)])
        start_idx += seq_len

    # convert tokenized text into numeric ids for the appropriate LM
    input_ids = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts]
    # get token type for token_ids_0
    token_type_ids = [tokenizer.create_token_type_ids_from_sequences(x) for x in input_ids]
    # append special token to end of sentence: <sep> <cls>
    input_ids = [tokenizer.build_inputs_with_special_tokens(x) for x in input_ids]
    # attention mask
    attention_mask = [[1] * len(x) for x in input_ids]

    # padding to max_length
    def padding_to_max(sequence, value):
        padding_len = max_seq_len - len(sequence)
        padding = [value] * padding_len
        return sequence + padding

    input_ids = [padding_to_max(x, tokenizer.pad_token_id) for x in input_ids]
    attention_mask = [padding_to_max(x, 0) for x in attention_mask]
    token_type_ids = [padding_to_max(x, tokenizer.pad_token_type_id) for x in token_type_ids]

    return input_ids, attention_mask, token_type_ids


def segment_tokenize_dataset(tokenizer, text, labels, max_seq_len, num_chunks):
    data = list(
        map(lambda t: segment_tokenize_inputs(t, tokenizer, max_seq_len, num_chunks), text))
    input_ids, attention_mask, token_type_ids = zip(*data)

    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "token_type_ids": token_type_ids,
        "targets": labels
    }


# The following functions are modified from the relevant codes of https://github.com/aehrc/LAAT
def roc_auc(true_labels, pred_probs, average="macro"):
    if pred_probs.shape[0] <= 1:
        return

    fpr = {}
    tpr = {}
    if average == "macro":
        # get AUC for each label individually
        relevant_labels = []
        auc_labels = {}
        for i in range(true_labels.shape[1]):
            # only if there are true positives for this label
            if true_labels[:, i].sum() > 0:
                fpr[i], tpr[i], _ = roc_curve(true_labels[:, i], pred_probs[:, i])
                if len(fpr[i]) > 1 and len(tpr[i]) > 1:
                    auc_score = auc(fpr[i], tpr[i])
                    if not np.isnan(auc_score):
                        auc_labels["auc_%d" % i] = auc_score
                        relevant_labels.append(i)

        # macro-AUC: just average the auc scores
        aucs = []
        for i in relevant_labels:
            aucs.append(auc_labels['auc_%d' % i])
        score = np.mean(aucs)
    else:
        # micro-AUC: just look at each individual prediction
        flat_pred = pred_probs.ravel()
        fpr["micro"], tpr["micro"], _ = roc_curve(true_labels.ravel(), flat_pred)
        score = auc(fpr["micro"], tpr["micro"])

    return score


def union_size(x, y, axis):
    return np.logical_or(x, y).sum(axis=axis).astype(float)


def intersect_size(x, y, axis):
    return np.logical_and(x, y).sum(axis=axis).astype(float)


def macro_accuracy(true_labels, pred_labels):
    num = intersect_size(true_labels, pred_labels, 0) / (union_size(true_labels, pred_labels, 0) + 1e-10)
    return np.mean(num)


def macro_precision(true_labels, pred_labels):
    num = intersect_size(true_labels, pred_labels, 0) / (pred_labels.sum(axis=0) + 1e-10)
    return np.mean(num)


def macro_recall(true_labels, pred_labels):
    num = intersect_size(true_labels, pred_labels, 0) / (true_labels.sum(axis=0) + 1e-10)
    return np.mean(num)


def macro_f1(true_labels, pred_labels):
    prec = macro_precision(true_labels, pred_labels)
    rec = macro_recall(true_labels, pred_labels)
    if prec + rec == 0:
        f1 = 0.
    else:
        f1 = 2 * (prec * rec) / (prec + rec)
    return prec, rec, f1


def precision_at_k(true_labels, pred_probs, ks=[1, 5, 8, 10, 15]):
    # num true labels in top k predictions / k
    sorted_pred = np.argsort(pred_probs)[:, ::-1]
    output = []
    for k in ks:
        topk = sorted_pred[:, :k]

        # get precision at k for each example
        vals = []
        for i, tk in enumerate(topk):
            if len(tk) > 0:
                num_true_in_top_k = true_labels[i, tk].sum()
                denom = len(tk)
                vals.append(num_true_in_top_k / float(denom))

        output.append(np.mean(vals))
    return output


def micro_recall(true_labels, pred_labels):
    flat_true = true_labels.ravel()
    flat_pred = pred_labels.ravel()
    return intersect_size(flat_true, flat_pred, 0) / flat_true.sum(axis=0)


def micro_precision(true_labels, pred_labels):
    flat_true = true_labels.ravel()
    flat_pred = pred_labels.ravel()
    if flat_pred.sum(axis=0) == 0:
        return 0.0
    return intersect_size(flat_true, flat_pred, 0) / flat_pred.sum(axis=0)


def micro_f1(true_labels, pred_labels):
    prec = micro_precision(true_labels, pred_labels)
    rec = micro_recall(true_labels, pred_labels)
    if prec + rec == 0:
        f1 = 0.
    else:
        f1 = 2 * (prec * rec) / (prec + rec)
    return prec, rec, f1


def micro_accuracy(true_labels, pred_labels):
    flat_true = true_labels.ravel()
    flat_pred = pred_labels.ravel()
    return intersect_size(flat_true, flat_pred, 0) / union_size(flat_true, flat_pred, 0)


def calculate_scores(true_labels, logits, average="macro", is_multilabel=True, threshold=0.5):
    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    pred_probs = sigmoid(logits)
    pred_labels = np.rint(pred_probs - threshold + 0.5)

    max_size = min(len(true_labels), len(pred_labels))
    true_labels = true_labels[: max_size]
    pred_labels = pred_labels[: max_size]
    pred_probs = pred_probs[: max_size]
    p_1 = 0
    p_5 = 0
    p_8 = 0
    p_10 = 0
    p_15 = 0
    if pred_probs is not None:
        if not is_multilabel:
            normalised_labels = normalise_labels(true_labels, len(pred_probs[0]))
            auc_score = roc_auc(normalised_labels, pred_probs, average=average)
            accuracy = accuracy_score(true_labels, pred_labels)
            precision = precision_score(true_labels, pred_labels, average=average)
            recall = recall_score(true_labels, pred_labels, average=average)
            f1 = f1_score(true_labels, pred_labels, average=average)
        else:
            if average == "macro":
                accuracy = macro_accuracy(true_labels, pred_labels)  # categorical accuracy
                precision, recall, f1 = macro_f1(true_labels, pred_labels)
                p_ks = precision_at_k(true_labels, pred_probs, [1, 5, 8, 10, 15])
                p_1 = p_ks[0]
                p_5 = p_ks[1]
                p_8 = p_ks[2]
                p_10 = p_ks[3]
                p_15 = p_ks[4]

            else:
                accuracy = micro_accuracy(true_labels, pred_labels)
                precision, recall, f1 = micro_f1(true_labels, pred_labels)
            auc_score = roc_auc(true_labels, pred_probs, average)
            labelwise_f1 = f1_score(true_labels, pred_labels, average=None)
            labelwise_f1 = np.array2string(labelwise_f1, separator=',')

    else:
        auc_score = -1

    output = {"{}_precision".format(average): precision, "{}_recall".format(average): recall,
              "{}_f1".format(average): f1, "{}_accuracy".format(average): accuracy,
              "{}_auc".format(average): auc_score, "{}_P@1".format(average): p_1, "{}_P@5".format(average): p_5,
              "{}_P@8".format(average): p_8, "{}_P@10".format(average): p_10, "{}_P@15".format(average): p_15,
              "labelwise_f1": labelwise_f1
              }

    return output