Spaces:
Running
Running
File size: 17,386 Bytes
e4d23ac 077d4e0 e4d23ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import collections
import logging
import torch
from torch.nn import BCEWithLogitsLoss, Dropout, Linear
from transformers import AutoModel, XLNetModel, LongformerConfig
from transformers.models.longformer.modeling_longformer import LongformerEncoder
from huggingface_hub import PyTorchModelHubMixin
from LongLAT.models.utils import initial_code_title_vectors
logger = logging.getLogger("lwat")
class CodingModelConfig:
def __init__(self,
transformer_model_name_or_path,
transformer_tokenizer_name,
transformer_layer_update_strategy,
num_chunks,
max_seq_length,
dropout,
dropout_att,
d_model,
label_dictionary,
num_labels,
use_code_representation,
code_max_seq_length,
code_batch_size,
multi_head_att,
chunk_att,
linear_init_mean,
linear_init_std,
document_pooling_strategy,
multi_head_chunk_attention,
num_hidden_layers):
super(CodingModelConfig, self).__init__()
self.transformer_model_name_or_path = transformer_model_name_or_path
self.transformer_tokenizer_name = transformer_tokenizer_name
self.transformer_layer_update_strategy = transformer_layer_update_strategy
self.num_chunks = num_chunks
self.max_seq_length = max_seq_length
self.dropout = dropout
self.dropout_att = dropout_att
self.d_model = d_model
# labels_dictionary is a dataframe with columns: icd9_code, long_title
self.label_dictionary = label_dictionary
self.num_labels = num_labels
self.use_code_representation = use_code_representation
self.code_max_seq_length = code_max_seq_length
self.code_batch_size = code_batch_size
self.multi_head_att = multi_head_att
self.chunk_att = chunk_att
self.linear_init_mean = linear_init_mean
self.linear_init_std = linear_init_std
self.document_pooling_strategy = document_pooling_strategy
self.multi_head_chunk_attention = multi_head_chunk_attention
self.num_hidden_layers = num_hidden_layers
class LableWiseAttentionLayer(torch.nn.Module):
def __init__(self, coding_model_config, args):
super(LableWiseAttentionLayer, self).__init__()
self.config = coding_model_config
self.args = args
# layers
self.l1_linear = torch.nn.Linear(self.config.d_model,
self.config.d_model, bias=False)
self.tanh = torch.nn.Tanh()
self.l2_linear = torch.nn.Linear(self.config.d_model, self.config.num_labels, bias=False)
self.softmax = torch.nn.Softmax(dim=1)
# Mean pooling last hidden state of code title from transformer model as the initial code vectors
self._init_linear_weights(mean=self.config.linear_init_mean, std=self.config.linear_init_std)
def _init_linear_weights(self, mean, std):
# normalize the l1 weights
torch.nn.init.normal_(self.l1_linear.weight, mean, std)
if self.l1_linear.bias is not None:
self.l1_linear.bias.data.fill_(0)
# initialize the l2
if self.config.use_code_representation:
code_vectors = initial_code_title_vectors(self.config.label_dictionary,
self.config.transformer_model_name_or_path,
self.config.transformer_tokenizer_name
if self.config.transformer_tokenizer_name
else self.config.transformer_model_name_or_path,
self.config.code_max_seq_length,
self.config.code_batch_size,
self.config.d_model,
self.args.device)
self.l2_linear.weight = torch.nn.Parameter(code_vectors, requires_grad=True)
torch.nn.init.normal_(self.l2_linear.weight, mean, std)
if self.l2_linear.bias is not None:
self.l2_linear.bias.data.fill_(0)
def forward(self, x):
# input: (batch_size, max_seq_length, transformer_hidden_size)
# output: (batch_size, max_seq_length, transformer_hidden_size)
# Z = Tan(WH)
l1_output = self.tanh(self.l1_linear(x))
# softmax(UZ)
# l2_linear output shape: (batch_size, max_seq_length, num_labels)
# attention_weight shape: (batch_size, num_labels, max_seq_length)
attention_weight = self.softmax(self.l2_linear(l1_output)).transpose(1, 2)
# attention_output shpae: (batch_size, num_labels, transformer_hidden_size)
attention_output = torch.matmul(attention_weight, x)
return attention_output, attention_weight
class ChunkAttentionLayer(torch.nn.Module):
def __init__(self, coding_model_config, args):
super(ChunkAttentionLayer, self).__init__()
self.config = coding_model_config
self.args = args
# layers
self.l1_linear = torch.nn.Linear(self.config.d_model,
self.config.d_model, bias=False)
self.tanh = torch.nn.Tanh()
self.l2_linear = torch.nn.Linear(self.config.d_model, 1, bias=False)
self.softmax = torch.nn.Softmax(dim=1)
self._init_linear_weights(mean=self.config.linear_init_mean, std=self.config.linear_init_std)
def _init_linear_weights(self, mean, std):
# initialize the l1
torch.nn.init.normal_(self.l1_linear.weight, mean, std)
if self.l1_linear.bias is not None:
self.l1_linear.bias.data.fill_(0)
# initialize the l2
torch.nn.init.normal_(self.l2_linear.weight, mean, std)
if self.l2_linear.bias is not None:
self.l2_linear.bias.data.fill_(0)
def forward(self, x):
# input: (batch_size, num_chunks, transformer_hidden_size)
# output: (batch_size, num_chunks, transformer_hidden_size)
# Z = Tan(WH)
l1_output = self.tanh(self.l1_linear(x))
# softmax(UZ)
# l2_linear output shape: (batch_size, num_chunks, 1)
# attention_weight shape: (batch_size, 1, num_chunks)
attention_weight = self.softmax(self.l2_linear(l1_output)).transpose(1, 2)
# attention_output shpae: (batch_size, 1, transformer_hidden_size)
attention_output = torch.matmul(attention_weight, x)
return attention_output, attention_weight
# define the model class
class CodingModel(torch.nn.Module, PyTorchModelHubMixin):
def __init__(self, coding_model_config, args, **kwargs):
super(CodingModel, self).__init__()
self.coding_model_config = coding_model_config
self.args = args
# layers
self.transformer_layer = AutoModel.from_pretrained(self.coding_model_config.transformer_model_name_or_path)
if isinstance(self.transformer_layer, XLNetModel):
self.transformer_layer.config.use_mems_eval = False
self.dropout = Dropout(p=self.coding_model_config.dropout)
if self.coding_model_config.multi_head_att:
# initial multi head attention according to the num_chunks
self.label_wise_attention_layer = torch.nn.ModuleList(
[LableWiseAttentionLayer(coding_model_config, args)
for _ in range(self.coding_model_config.num_chunks)])
else:
self.label_wise_attention_layer = LableWiseAttentionLayer(coding_model_config, args)
self.dropout_att = Dropout(p=self.coding_model_config.dropout_att)
# initial chunk attention
if self.coding_model_config.chunk_att:
if self.coding_model_config.multi_head_chunk_attention:
self.chunk_attention_layer = torch.nn.ModuleList([ChunkAttentionLayer(coding_model_config, args)
for _ in range(self.coding_model_config.num_labels)])
else:
self.chunk_attention_layer = ChunkAttentionLayer(coding_model_config, args)
self.classifier_layer = Linear(self.coding_model_config.d_model,
self.coding_model_config.num_labels)
else:
if self.coding_model_config.document_pooling_strategy == "flat":
self.classifier_layer = Linear(self.coding_model_config.num_chunks * self.coding_model_config.d_model,
self.coding_model_config.num_labels)
else: # max or mean pooling
self.classifier_layer = Linear(self.coding_model_config.d_model,
self.coding_model_config.num_labels)
self.sigmoid = torch.nn.Sigmoid()
if self.coding_model_config.transformer_layer_update_strategy == "no":
self.freeze_all_transformer_layers()
elif self.coding_model_config.transformer_layer_update_strategy == "last":
self.freeze_all_transformer_layers()
self.unfreeze_transformer_last_layers()
# initialize the weights of classifier
self._init_linear_weights(mean=self.coding_model_config.linear_init_mean, std=self.coding_model_config.linear_init_std)
def _init_linear_weights(self, mean, std):
torch.nn.init.normal_(self.classifier_layer.weight, mean, std)
def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor):
# longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn)
# (global_attention_mask + 1) => 1 for local attention, 2 for global attention
# => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention
if attention_mask is not None:
attention_mask = attention_mask * (global_attention_mask + 1)
else:
# simply use `global_attention_mask` as `attention_mask`
# if no `attention_mask` is given
attention_mask = global_attention_mask + 1
return attention_mask
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, targets=None):
# input ids/mask/type_ids shape: (batch_size, num_chunks, max_seq_length)
# labels shape: (batch_size, num_labels)
transformer_output = []
# pass chunk by chunk into transformer layer in the batches.
# input (batch_size, sequence_length)
for i in range(self.coding_model_config.num_chunks):
l1_output = self.transformer_layer(input_ids=input_ids[:, i, :],
attention_mask=attention_mask[:, i, :],
token_type_ids=token_type_ids[:, i, :])
# output hidden state shape: (batch_size, sequence_length, hidden_size)
transformer_output.append(l1_output[0])
# transpose back chunk and batch size dimensions
transformer_output = torch.stack(transformer_output)
transformer_output = transformer_output.transpose(0, 1)
# dropout transformer output
l2_dropout = self.dropout(transformer_output)
config = LongformerConfig.from_pretrained("allenai/longformer-base-4096")
config.num_labels =5
config.num_hidden_layers = 2
# self.coding_model_config.num_hidden_layers
config.hidden_size = self.coding_model_config.d_model
config.attention_window = [512, 512]
longformer_layer = LongformerEncoder(config)
# longformer_layer = longformer_layer(config)
longformer_layer = longformer_layer.to(torch.device("cuda:0"))
l2_dropout= l2_dropout.reshape(l2_dropout.shape[0], l2_dropout.shape[1]*l2_dropout.shape[2], l2_dropout.shape[3])
attention_mask = attention_mask.reshape(attention_mask.shape[0], attention_mask.shape[1]*attention_mask.shape[2])
# is_index_masked = attention_mask < 0
global_attention_mask = torch.zeros_like(attention_mask)
# global attention on cls token
global_attention_positions = [0, 512, 1024, 1536, 2048, 2560, 3072, 3584, 4095]
global_attention_mask[:, global_attention_positions] = 1
if global_attention_mask is not None:
attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask)
output = longformer_layer(l2_dropout, attention_mask=attention_mask,output_attentions=True)
l2_dropout = self.dropout_att(output[0])
l2_dropout = l2_dropout.reshape(l2_dropout.shape[0], self.coding_model_config.num_chunks, self.coding_model_config.max_seq_length, self.coding_model_config.d_model)
# Label-wise attention layers
# output: (batch_size, num_chunks, num_labels, hidden_size)
attention_output = []
attention_weights = []
for i in range(self.coding_model_config.num_chunks):
# input: (batch_size, max_seq_length, transformer_hidden_size)
if self.coding_model_config.multi_head_att:
attention_layer = self.label_wise_attention_layer[i]
else:
attention_layer = self.label_wise_attention_layer
l3_attention, attention_weight = attention_layer(l2_dropout[:, i, :])
# l3_attention shape: (batch_size, num_labels, hidden_size)
# attention_weight: (batch_size, num_labels, max_seq_length)
attention_output.append(l3_attention)
attention_weights.append(attention_weight)
attention_output = torch.stack(attention_output)
attention_output = attention_output.transpose(0, 1)
attention_weights = torch.stack(attention_weights)
attention_weights = attention_weights.transpose(0, 1)
l3_dropout = self.dropout_att(attention_output)
if self.coding_model_config.chunk_att:
# Chunk attention layers
# output: (batch_size, num_labels, hidden_size)
chunk_attention_output = []
chunk_attention_weights = []
for i in range(self.coding_model_config.num_labels):
if self.coding_model_config.multi_head_chunk_attention:
chunk_attention = self.chunk_attention_layer[i]
else:
chunk_attention = self.chunk_attention_layer
l4_chunk_attention, l4_chunk_attention_weights = chunk_attention(l3_dropout[:, :, i])
chunk_attention_output.append(l4_chunk_attention.squeeze(dim=1))
chunk_attention_weights.append(l4_chunk_attention_weights.squeeze(dim=1))
chunk_attention_output = torch.stack(chunk_attention_output)
chunk_attention_output = chunk_attention_output.transpose(0, 1)
chunk_attention_weights = torch.stack(chunk_attention_weights)
chunk_attention_weights = chunk_attention_weights.transpose(0, 1)
# output shape: (batch_size, num_labels, hidden_size)
l4_dropout = self.dropout_att(chunk_attention_output)
else:
# output shape: (batch_size, num_labels, hidden_size*num_chunks)
l4_dropout = l3_dropout.transpose(1, 2)
if self.coding_model_config.document_pooling_strategy == "flat":
# Flatten layer. concatenate representation by labels
l4_dropout = torch.flatten(l4_dropout, start_dim=2)
elif self.coding_model_config.document_pooling_strategy == "max":
l4_dropout = torch.amax(l4_dropout, 2)
elif self.coding_model_config.document_pooling_strategy == "mean":
l4_dropout = torch.mean(l4_dropout, 2)
else:
raise ValueError("Not supported pooling strategy")
# classifier layer
# each code has a binary linear formula
logits = self.classifier_layer.weight.mul(l4_dropout).sum(dim=2).add(self.classifier_layer.bias)
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, targets)
return {
"loss": loss,
"logits": logits,
"label_attention_weights": attention_weights,
"chunk_attention_weights": chunk_attention_weights if self.coding_model_config.chunk_att else []
}
def freeze_all_transformer_layers(self):
"""
Freeze all layer weight parameters. They will not be updated during training.
"""
for param in self.transformer_layer.parameters():
param.requires_grad = False
def unfreeze_all_transformer_layers(self):
"""
Unfreeze all layers weight parameters. They will be updated during training.
"""
for param in self.transformer_layer.parameters():
param.requires_grad = True
def unfreeze_transformer_last_layers(self):
for name, param in self.transformer_layer.named_parameters():
if "layer.11" in name or "pooler" in name:
param.requires_grad = True
|