Spaces:
Running
Running
File size: 16,744 Bytes
e4d23ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import csv
import linecache
import pickle
import random
import subprocess
import numpy as np
import redis
import torch
import logging
import ast
from datasets import Dataset
from tqdm import tqdm
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, roc_auc_score, roc_curve, auc
from torch.utils.data import DataLoader
from transformers import AutoModel, DataCollatorWithPadding, XLNetTokenizer, XLNetTokenizerFast, AutoTokenizer, \
XLNetModel, is_torch_tpu_available
logger = logging.getLogger("lwat")
class MimicIIIDataset(Dataset):
def __init__(self, data):
self.input_ids = data["input_ids"]
self.attention_mask = data["attention_mask"]
self.token_type_ids = data["token_type_ids"]
self.labels = data["targets"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, item):
return {
"input_ids": torch.tensor(self.input_ids[item], dtype=torch.long),
"attention_mask": torch.tensor(self.attention_mask[item], dtype=torch.float),
"token_type_ids": torch.tensor(self.token_type_ids[item], dtype=torch.long),
"targets": torch.tensor(self.labels[item], dtype=torch.float)
}
class LazyMimicIIIDataset(Dataset):
def __init__(self, filename, task, dataset_type):
print("lazy load from {}".format(filename))
self.filename = filename
self.redis = redis.Redis(unix_socket_path="/tmp/redis.sock")
self.pipe = self.redis.pipeline()
self.num_examples = 0
self.task = task
self.dataset_type = dataset_type
with open(filename, 'r') as f:
for line_num, line in enumerate(f.readlines()):
self.num_examples += 1
example = eval(line)
key = task + '_' + dataset_type + '_' + str(line_num)
input_ids = eval(example[0])
attention_mask = eval(example[1])
token_type_ids = eval(example[2])
labels = eval(example[3])
example_tuple = (input_ids, attention_mask, token_type_ids, labels)
self.pipe.set(key, pickle.dumps(example_tuple))
if line_num % 100 == 0:
self.pipe.execute()
self.pipe.execute()
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
xm.rendezvous(tag="featuresGenerated")
def __len__(self):
return self.num_examples
def __getitem__(self, item):
key = self.task + '_' + self.dataset_type + '_' + str(item)
example = pickle.loads(self.redis.get(key))
return {
"input_ids": torch.tensor(example[0], dtype=torch.long),
"attention_mask": torch.tensor(example[1], dtype=torch.float),
"token_type_ids": torch.tensor(example[2], dtype=torch.long),
"targets": torch.tensor(example[3], dtype=torch.float)
}
class ICDCodeDataset(Dataset):
def __init__(self, data):
self.input_ids = data["input_ids"]
self.attention_mask = data["attention_mask"]
self.token_type_ids = data["token_type_ids"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, item):
return {
"input_ids": torch.tensor(self.input_ids[item], dtype=torch.long),
"attention_mask": torch.tensor(self.attention_mask[item], dtype=torch.float),
"token_type_ids": torch.tensor(self.token_type_ids[item], dtype=torch.long)
}
def set_random_seed(random_seed):
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def tokenize_inputs(text_list, tokenizer, max_seq_len=512):
"""
Tokenizes the input text input into ids. Appends the appropriate special
characters to the end of the text to denote end of sentence. Truncate or pad
the appropriate sequence length.
"""
# tokenize the text, then truncate sequence to the desired length minus 2 for
# the 2 special characters
tokenized_texts = list(map(lambda t: tokenizer.tokenize(t)[:max_seq_len - 2], text_list))
# convert tokenized text into numeric ids for the appropriate LM
input_ids = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts]
# get token type for token_ids_0
token_type_ids = [tokenizer.create_token_type_ids_from_sequences(x) for x in input_ids]
# append special token to end of sentence: <sep> <cls>
input_ids = [tokenizer.build_inputs_with_special_tokens(x) for x in input_ids]
# attention mask
attention_mask = [[1] * len(x) for x in input_ids]
# padding to max_length
def padding_to_max(sequence, value):
padding_len = max_seq_len - len(sequence)
padding = [value] * padding_len
return sequence + padding
input_ids = [padding_to_max(x, tokenizer.pad_token_id) for x in input_ids]
attention_mask = [padding_to_max(x, 0) for x in attention_mask]
token_type_ids = [padding_to_max(x, tokenizer.pad_token_type_id) for x in token_type_ids]
return input_ids, attention_mask, token_type_ids
def tokenize_dataset(tokenizer, text, labels, max_seq_len):
if (isinstance(tokenizer, XLNetTokenizer) or isinstance(tokenizer, XLNetTokenizerFast)):
data = list(map(lambda t: tokenize_inputs(t, tokenizer, max_seq_len=max_seq_len), text))
input_ids, attention_mask, token_type_ids = zip(*data)
else:
tokenizer.model_max_length = max_seq_len
input_dict = tokenizer(text, padding=True, truncation=True)
input_ids = input_dict["input_ids"]
attention_mask = input_dict["attention_mask"]
token_type_ids = input_dict["token_type_ids"]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"targets": labels
}
def initial_code_title_vectors(label_dict, transformer_model_name, tokenizer_name, code_max_seq_length, code_batch_size,
d_model, device):
logger.info("Generate code title representations from base transformer model")
model = AutoModel.from_pretrained(transformer_model_name)
if isinstance(model, XLNetModel):
model.config.use_mems_eval = False
#
# model.config.use_mems_eval = False
# model.config.reuse_len = 0
code_titles = label_dict["long_title"].fillna("").tolist()
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, padding_side="right")
data = tokenizer(code_titles, padding=True, truncation=True)
code_dataset = ICDCodeDataset(data)
model.to(device)
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length",
max_length=code_max_seq_length)
code_param = {"batch_size": code_batch_size, "collate_fn": data_collator}
code_dataloader = DataLoader(code_dataset, **code_param)
code_dataloader_progress_bar = tqdm(code_dataloader, unit="batches",
desc="Code title representations")
code_dataloader_progress_bar.clear()
# output shape: (num_labels, hidden_size)
initial_code_vectors = torch.zeros(len(code_dataset), d_model)
for i, data in enumerate(code_dataloader_progress_bar):
input_ids = data["input_ids"].to(device, dtype=torch.long)
attention_mask = data["attention_mask"].to(device, dtype=torch.float)
token_type_ids = data["token_type_ids"].to(device, dtype=torch.long)
# output shape: (batch_size, sequence_length, hidden_size)
output = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
# Mean pooling. output shape: (batch_size, hidden_size)
mean_last_hidden_state = torch.mean(output[0], 1)
# Max pooling. output shape: (batch_size, hidden_size)
# max_last_hidden_state = torch.max((output[0] * attention_mask.unsqueeze(-1)), 1)[0]
initial_code_vectors[i * input_ids.shape[0]:(i + 1) * input_ids.shape[0], :] = mean_last_hidden_state
code_dataloader_progress_bar.refresh(True)
code_dataloader_progress_bar.clear(True)
code_dataloader_progress_bar.close()
logger.info("Code representations ready for use. Shape {}".format(initial_code_vectors.shape))
return initial_code_vectors
def normalise_labels(labels, n_label):
norm_labels = []
for label in labels:
one_hot_vector_label = [0] * n_label
one_hot_vector_label[label] = 1
norm_labels.append(one_hot_vector_label)
return np.asarray(norm_labels)
def segment_tokenize_inputs(text, tokenizer, max_seq_len, num_chunks):
# input is full text of one document
tokenized_texts = []
tokens = tokenizer.tokenize(text)
start_idx = 0
seq_len = max_seq_len - 2
for i in range(num_chunks):
if start_idx > len(tokens):
tokenized_texts.append([])
continue
tokenized_texts.append(tokens[start_idx:(start_idx + seq_len)])
start_idx += seq_len
# convert tokenized text into numeric ids for the appropriate LM
input_ids = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts]
# get token type for token_ids_0
token_type_ids = [tokenizer.create_token_type_ids_from_sequences(x) for x in input_ids]
# append special token to end of sentence: <sep> <cls>
input_ids = [tokenizer.build_inputs_with_special_tokens(x) for x in input_ids]
# attention mask
attention_mask = [[1] * len(x) for x in input_ids]
# padding to max_length
def padding_to_max(sequence, value):
padding_len = max_seq_len - len(sequence)
padding = [value] * padding_len
return sequence + padding
input_ids = [padding_to_max(x, tokenizer.pad_token_id) for x in input_ids]
attention_mask = [padding_to_max(x, 0) for x in attention_mask]
token_type_ids = [padding_to_max(x, tokenizer.pad_token_type_id) for x in token_type_ids]
return input_ids, attention_mask, token_type_ids
def segment_tokenize_dataset(tokenizer, text, labels, max_seq_len, num_chunks):
data = list(
map(lambda t: segment_tokenize_inputs(t, tokenizer, max_seq_len, num_chunks), text))
input_ids, attention_mask, token_type_ids = zip(*data)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"targets": labels
}
# The following functions are modified from the relevant codes of https://github.com/aehrc/LAAT
def roc_auc(true_labels, pred_probs, average="macro"):
if pred_probs.shape[0] <= 1:
return
fpr = {}
tpr = {}
if average == "macro":
# get AUC for each label individually
relevant_labels = []
auc_labels = {}
for i in range(true_labels.shape[1]):
# only if there are true positives for this label
if true_labels[:, i].sum() > 0:
fpr[i], tpr[i], _ = roc_curve(true_labels[:, i], pred_probs[:, i])
if len(fpr[i]) > 1 and len(tpr[i]) > 1:
auc_score = auc(fpr[i], tpr[i])
if not np.isnan(auc_score):
auc_labels["auc_%d" % i] = auc_score
relevant_labels.append(i)
# macro-AUC: just average the auc scores
aucs = []
for i in relevant_labels:
aucs.append(auc_labels['auc_%d' % i])
score = np.mean(aucs)
else:
# micro-AUC: just look at each individual prediction
flat_pred = pred_probs.ravel()
fpr["micro"], tpr["micro"], _ = roc_curve(true_labels.ravel(), flat_pred)
score = auc(fpr["micro"], tpr["micro"])
return score
def union_size(x, y, axis):
return np.logical_or(x, y).sum(axis=axis).astype(float)
def intersect_size(x, y, axis):
return np.logical_and(x, y).sum(axis=axis).astype(float)
def macro_accuracy(true_labels, pred_labels):
num = intersect_size(true_labels, pred_labels, 0) / (union_size(true_labels, pred_labels, 0) + 1e-10)
return np.mean(num)
def macro_precision(true_labels, pred_labels):
num = intersect_size(true_labels, pred_labels, 0) / (pred_labels.sum(axis=0) + 1e-10)
return np.mean(num)
def macro_recall(true_labels, pred_labels):
num = intersect_size(true_labels, pred_labels, 0) / (true_labels.sum(axis=0) + 1e-10)
return np.mean(num)
def macro_f1(true_labels, pred_labels):
prec = macro_precision(true_labels, pred_labels)
rec = macro_recall(true_labels, pred_labels)
if prec + rec == 0:
f1 = 0.
else:
f1 = 2 * (prec * rec) / (prec + rec)
return prec, rec, f1
def precision_at_k(true_labels, pred_probs, ks=[1, 5, 8, 10, 15]):
# num true labels in top k predictions / k
sorted_pred = np.argsort(pred_probs)[:, ::-1]
output = []
for k in ks:
topk = sorted_pred[:, :k]
# get precision at k for each example
vals = []
for i, tk in enumerate(topk):
if len(tk) > 0:
num_true_in_top_k = true_labels[i, tk].sum()
denom = len(tk)
vals.append(num_true_in_top_k / float(denom))
output.append(np.mean(vals))
return output
def micro_recall(true_labels, pred_labels):
flat_true = true_labels.ravel()
flat_pred = pred_labels.ravel()
return intersect_size(flat_true, flat_pred, 0) / flat_true.sum(axis=0)
def micro_precision(true_labels, pred_labels):
flat_true = true_labels.ravel()
flat_pred = pred_labels.ravel()
if flat_pred.sum(axis=0) == 0:
return 0.0
return intersect_size(flat_true, flat_pred, 0) / flat_pred.sum(axis=0)
def micro_f1(true_labels, pred_labels):
prec = micro_precision(true_labels, pred_labels)
rec = micro_recall(true_labels, pred_labels)
if prec + rec == 0:
f1 = 0.
else:
f1 = 2 * (prec * rec) / (prec + rec)
return prec, rec, f1
def micro_accuracy(true_labels, pred_labels):
flat_true = true_labels.ravel()
flat_pred = pred_labels.ravel()
return intersect_size(flat_true, flat_pred, 0) / union_size(flat_true, flat_pred, 0)
def calculate_scores(true_labels, logits, average="macro", is_multilabel=True, threshold=0.5):
def sigmoid(x):
return 1 / (1 + np.exp(-x))
pred_probs = sigmoid(logits)
pred_labels = np.rint(pred_probs - threshold + 0.5)
max_size = min(len(true_labels), len(pred_labels))
true_labels = true_labels[: max_size]
pred_labels = pred_labels[: max_size]
pred_probs = pred_probs[: max_size]
p_1 = 0
p_5 = 0
p_8 = 0
p_10 = 0
p_15 = 0
if pred_probs is not None:
if not is_multilabel:
normalised_labels = normalise_labels(true_labels, len(pred_probs[0]))
auc_score = roc_auc(normalised_labels, pred_probs, average=average)
accuracy = accuracy_score(true_labels, pred_labels)
precision = precision_score(true_labels, pred_labels, average=average)
recall = recall_score(true_labels, pred_labels, average=average)
f1 = f1_score(true_labels, pred_labels, average=average)
else:
if average == "macro":
accuracy = macro_accuracy(true_labels, pred_labels) # categorical accuracy
precision, recall, f1 = macro_f1(true_labels, pred_labels)
p_ks = precision_at_k(true_labels, pred_probs, [1, 5, 8, 10, 15])
p_1 = p_ks[0]
p_5 = p_ks[1]
p_8 = p_ks[2]
p_10 = p_ks[3]
p_15 = p_ks[4]
else:
accuracy = micro_accuracy(true_labels, pred_labels)
precision, recall, f1 = micro_f1(true_labels, pred_labels)
auc_score = roc_auc(true_labels, pred_probs, average)
# Calculate label-wise F1 scores
labelwise_f1 = f1_score(true_labels, pred_labels, average=None)
labelwise_f1 = np.array2string(labelwise_f1, separator=',')
else:
auc_score = -1
output = {"{}_precision".format(average): precision, "{}_recall".format(average): recall,
"{}_f1".format(average): f1, "{}_accuracy".format(average): accuracy,
"{}_auc".format(average): auc_score, "{}_P@1".format(average): p_1, "{}_P@5".format(average): p_5,
"{}_P@8".format(average): p_8, "{}_P@10".format(average): p_10, "{}_P@15".format(average): p_15,
"labelwise_f1": labelwise_f1
}
return output
|