Spaces:
Sleeping
Sleeping
File size: 8,681 Bytes
e9066e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
#!/usr/bin/env python
# coding: utf-8
# In[7]:
from dataclasses import dataclass, field
from datetime import datetime
from typing import List, Optional
from transformers.file_utils import ExplicitEnum
task_to_keys = {
"mimic3-50": ("mimic3-50"),
"mimic3-full": ("mimic3-full"),
}
class TransformerLayerUpdateStrategy(ExplicitEnum):
NO = "no"
LAST = "last"
ALL = "all"
class DocumentPoolingStrategy(ExplicitEnum):
FLAT = "flat"
MAX = "max"
MEAN = "mean"
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
task_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
)
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
# customized data arguments
label_dictionary_file: Optional[str] = field(
default=None, metadata={"help": "The name of the test data file."}
)
code_max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization for code long titles"
},
)
code_batch_size: int = field(
default=8,
metadata={
"help": "The batch size for generating code representation"
},
)
ignore_keys_for_eval: Optional[List[str]] = field(
default=None, metadata={"help": "The list of keys to be ignored during evaluation process."}
)
use_cached_datasets: bool = field(
default=True,
metadata={"help": "if use cached datasets to save preprocessing time. The cached datasets were preprocessed "
"and saved into data folder."})
data_segmented: bool = field(
default=False,
metadata={"help": "if dataset is segmented or not"})
lazy_loading: bool = field(
default=False,
metadata={"help": "if dataset is larger than 500MB, please use lazy_loading"})
def __post_init__(self):
if self.task_name is not None:
self.task_name = self.task_name.lower()
if self.task_name not in task_to_keys.keys():
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
elif self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need a training/validation file")
elif self.label_dictionary_file is None:
raise ValueError("label dictionary must be provided")
else:
train_extension = self.train_file.split(".")[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
validation_extension = self.validation_file.split(".")[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
# Customized model arguments
d_model: int = field(default=768, metadata={"help": "hidden size of model. should be the same as base transformer "
"model"})
dropout: float = field(default=0.1, metadata={"help": "Dropout of transformer layer"})
dropout_att: float = field(default=0.1, metadata={"help": "Dropout of label-wise attention layer"})
num_chunks_per_document: int = field(default=0.1, metadata={"help": "Num of chunks per document"})
transformer_layer_update_strategy: TransformerLayerUpdateStrategy = field(
default="all",
metadata={"help": "Update which transformer layers when training"})
use_code_representation: bool = field(
default=True,
metadata={"help": "if use code representation as the "
"initial parameters of code vectors in attention layer"})
multi_head_attention: bool = field(
default=True,
metadata={"help": "if use multi head attention for different chunks"})
chunk_attention: bool = field(
default=True,
metadata={"help": "if use chunk attention for each label"})
multi_head_chunk_attention: bool = field(
default=True,
metadata={"help": "if use multi head chunk attention for each label"})
num_hidden_layers: int = field(
default=2, metadata={"help": "NUm of hidden layers in longformer"}
)
linear_init_mean: float = field(default=0.0, metadata={"help": "mean value for initializing linear layer weights"})
linear_init_std: float = field(default=0.03, metadata={"help": "standard deviation value for initializing linear "
"layer weights"})
document_pooling_strategy: DocumentPoolingStrategy = field(
default="flat",
metadata={"help": "how to pool document representation after label-wise attention layer for each label"})
|