meghanaraok commited on
Commit
7b42cef
1 Parent(s): e171206

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -5
app.py CHANGED
@@ -96,7 +96,7 @@ def predict_icd(text_input, model_name, label_count):
96
 
97
  model_path = "meghanaraok/"+model_name+"_"+label_count+"/"
98
  #change
99
- label_dict = pd.read_csv("data/mimic3"+label_count+"/labels_dictionary_"+label_count+"_level_1.csv")
100
  num_labels = label_dict.shape[0]
101
 
102
  if model_name != "ClinicalLongformer":
@@ -104,17 +104,13 @@ def predict_icd(text_input, model_name, label_count):
104
  parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
105
  model_args, data_args, training_args = parser.parse_json_file(json_file=config_json)
106
  coding_model_config, model_class = get_coding_model_config(model_name, model_args, data_args, label_dict, label_dict.shape[0])
107
- #2
108
  kwargs = {
109
  "coding_model_config": coding_model_config,
110
  "args": training_args
111
  }
112
- #3
113
  model = model_class.from_pretrained(model_path, **kwargs)
114
  model.to(torch.device("cuda:0"))
115
- #4
116
  tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, padding_side="right")
117
- #4
118
  results = segment_tokenize_dataset(tokenizer, text, labels,
119
  data_args.max_seq_length,
120
  model_args.num_chunks_per_document)
 
96
 
97
  model_path = "meghanaraok/"+model_name+"_"+label_count+"/"
98
  #change
99
+ label_dict = pd.read_csv("../data/mimic3"+label_count+"/labels_dictionary_"+label_count+"_level_1.csv")
100
  num_labels = label_dict.shape[0]
101
 
102
  if model_name != "ClinicalLongformer":
 
104
  parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
105
  model_args, data_args, training_args = parser.parse_json_file(json_file=config_json)
106
  coding_model_config, model_class = get_coding_model_config(model_name, model_args, data_args, label_dict, label_dict.shape[0])
 
107
  kwargs = {
108
  "coding_model_config": coding_model_config,
109
  "args": training_args
110
  }
 
111
  model = model_class.from_pretrained(model_path, **kwargs)
112
  model.to(torch.device("cuda:0"))
 
113
  tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, padding_side="right")
 
114
  results = segment_tokenize_dataset(tokenizer, text, labels,
115
  data_args.max_seq_length,
116
  model_args.num_chunks_per_document)