Spaces:
Runtime error
Runtime error
# --------------------------------------------------------------- | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# This work is licensed under the NVIDIA Source Code License | |
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file. | |
# --------------------------------------------------------------- | |
import argparse | |
import torch | |
import numpy as np | |
import time | |
import os | |
import json | |
import torchvision | |
import random | |
from score_sde.models.ncsnpp_generator_adagn import NCSNpp | |
from torch.nn.functional import adaptive_avg_pool2d | |
try: | |
from pytorch_fid.fid_score import calculate_activation_statistics, calculate_fid_given_paths, ImagePathDataset, compute_statistics_of_path, calculate_frechet_distance | |
from pytorch_fid.inception import InceptionV3 | |
except ImportError: | |
pass | |
try: | |
import ImageReward as RM | |
except ImportError: | |
pass | |
try: | |
import clip | |
except ImportError: | |
pass | |
from encoder import build_encoder | |
from clip_encoder import CLIPImageEncoder | |
from model_configs import get_model_config | |
#%% Diffusion coefficients | |
def var_func_vp(t, beta_min, beta_max): | |
log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min | |
var = 1. - torch.exp(2. * log_mean_coeff) | |
return var | |
def var_func_geometric(t, beta_min, beta_max): | |
return beta_min * ((beta_max / beta_min) ** t) | |
def extract(input, t, shape): | |
out = torch.gather(input, 0, t) | |
reshape = [shape[0]] + [1] * (len(shape) - 1) | |
out = out.reshape(*reshape) | |
return out | |
def get_time_schedule(args, device): | |
n_timestep = args.num_timesteps | |
eps_small = 1e-3 | |
t = np.arange(0, n_timestep + 1, dtype=np.float64) | |
t = t / n_timestep | |
t = torch.from_numpy(t) * (1. - eps_small) + eps_small | |
return t.to(device) | |
def get_sigma_schedule(args, device): | |
n_timestep = args.num_timesteps | |
beta_min = args.beta_min | |
beta_max = args.beta_max | |
eps_small = 1e-3 | |
t = np.arange(0, n_timestep + 1, dtype=np.float64) | |
t = t / n_timestep | |
t = torch.from_numpy(t) * (1. - eps_small) + eps_small | |
if args.use_geometric: | |
var = var_func_geometric(t, beta_min, beta_max) | |
else: | |
var = var_func_vp(t, beta_min, beta_max) | |
alpha_bars = 1.0 - var | |
betas = 1 - alpha_bars[1:] / alpha_bars[:-1] | |
first = torch.tensor(1e-8) | |
betas = torch.cat((first[None], betas)).to(device) | |
betas = betas.type(torch.float32) | |
sigmas = betas**0.5 | |
a_s = torch.sqrt(1-betas) | |
return sigmas, a_s, betas | |
#%% posterior sampling | |
class Posterior_Coefficients(): | |
def __init__(self, args, device): | |
_, _, self.betas = get_sigma_schedule(args, device=device) | |
#we don't need the zeros | |
self.betas = self.betas.type(torch.float32)[1:] | |
self.alphas = 1 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, 0) | |
self.alphas_cumprod_prev = torch.cat( | |
(torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0 | |
) | |
self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) | |
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod) | |
self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod) | |
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1) | |
self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)) | |
self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod)) | |
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20)) | |
def predict_q_posterior(coefficients, x_0, x_t, t): | |
mean = ( | |
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0 | |
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
var = extract(coefficients.posterior_variance, t, x_t.shape) | |
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape) | |
return mean, var, log_var_clipped | |
def sample_posterior(coefficients, x_0,x_t, t): | |
def q_posterior(x_0, x_t, t): | |
mean = ( | |
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0 | |
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
var = extract(coefficients.posterior_variance, t, x_t.shape) | |
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape) | |
return mean, var, log_var_clipped | |
def p_sample(x_0, x_t, t): | |
mean, _, log_var = q_posterior(x_0, x_t, t) | |
noise = torch.randn_like(x_t) | |
nonzero_mask = (1 - (t == 0).type(torch.float32)) | |
return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise | |
sample_x_pos = p_sample(x_0, x_t, t) | |
return sample_x_pos | |
def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None): | |
x = x_init | |
with torch.no_grad(): | |
for i in reversed(range(n_time)): | |
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device) | |
t_time = t | |
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)#.to(x.device) | |
x_0 = generator(x, t_time, latent_z, cond=cond) | |
x_new = sample_posterior(coefficients, x_0, x, t) | |
x = x_new.detach() | |
return x | |
def sample(generator, x_init, cond=None): | |
return sample_from_model( | |
generator.pos_coeff, generator, n_time=generator.config.num_timesteps, x_init=x_init, | |
T=generator.time_schedule, opt=generator.config, cond=cond | |
) | |
def sample_from_model_classifier_free_guidance(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0): | |
x = x_init | |
null = text_encoder([""] * len(x_init), return_only_pooled=False) | |
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device) | |
with torch.no_grad(): | |
for i in reversed(range(n_time)): | |
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device) | |
t_time = t | |
latent_z = torch.randn(x.size(0), opt.nz, device=x.device) | |
x_0_uncond = generator(x, t_time, latent_z, cond=null) | |
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device) | |
x_0_cond = generator(x, t_time, latent_z, cond=cond) | |
eps_uncond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i]) | |
eps_cond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_cond) / torch.sqrt(1 - coefficients.alphas_cumprod[i]) | |
# eps = eps_uncond + guidance_scale * (eps_cond - eps_uncond) | |
eps = eps_uncond * (1 - guidance_scale) + eps_cond * guidance_scale | |
x_0 = (1/torch.sqrt(coefficients.alphas_cumprod[i])) * (x - torch.sqrt(1 - coefficients.alphas_cumprod[i]) * eps) | |
#x_0 = x_0_uncond * (1 - guidance_scale) + x_0_cond * guidance_scale | |
# Dynamic thresholding | |
q = opt.dynamic_thresholding_quantile | |
#print("Before", x_0.min(), x_0.max()) | |
if q: | |
shape = x_0.shape | |
x_0_v = x_0.view(shape[0], -1) | |
d = torch.quantile(torch.abs(x_0_v), q, dim=1, keepdim=True) | |
d.clamp_(min=1) | |
x_0_v = x_0_v.clamp(-d, d) / d | |
x_0 = x_0_v.view(shape) | |
#print("After", x_0.min(), x_0.max()) | |
x_new = sample_posterior(coefficients, x_0, x, t) | |
# Dynamic thresholding | |
# q = args.dynamic_thresholding_percentile | |
# shape = x_new.shape | |
# x_new_v = x_new.view(shape[0], -1) | |
# d = torch.quantile(torch.abs(x_new_v), q, dim=1, keepdim=True) | |
# d = torch.maximum(d, torch.ones_like(d)) | |
# d.clamp_(min = 1.) | |
# x_new_v = torch.clamp(x_new_v, -d, d) / d | |
# x_new = x_new_v.view(shape) | |
x = x_new.detach() | |
return x | |
def sample_from_model_classifier_free_guidance_convolutional(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0, split_input_params=None): | |
x = x_init | |
null = text_encoder([""] * len(x_init), return_only_pooled=False) | |
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device) | |
ks = split_input_params["ks"] # eg. (128, 128) | |
stride = split_input_params["stride"] # eg. (64, 64) | |
uf = split_input_params["vqf"] | |
with torch.no_grad(): | |
for i in reversed(range(n_time)): | |
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device) | |
t_time = t | |
latent_z = torch.randn(x.size(0), opt.nz, device=x.device) | |
fold, unfold, normalization, weighting = get_fold_unfold(x, ks, stride, split_input_params, uf=uf) | |
x = unfold(x) | |
x = x.view((x.shape[0], -1, ks[0], ks[1], x.shape[-1])) | |
x_new_list = [] | |
for j in range(x.shape[-1]): | |
x_0_uncond = generator(x[:,:,:,:,j], t_time, latent_z, cond=null) | |
x_0_cond = generator(x[:,:,:,:,j], t_time, latent_z, cond=cond) | |
eps_uncond = (x[:,:,:,:,j] - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i]) | |
eps_cond = (x[:,:,:,:,j] - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_cond) / torch.sqrt(1 - coefficients.alphas_cumprod[i]) | |
eps = eps_uncond * (1 - guidance_scale) + eps_cond * guidance_scale | |
x_0 = (1/torch.sqrt(coefficients.alphas_cumprod[i])) * (x[:,:,:,:,j] - torch.sqrt(1 - coefficients.alphas_cumprod[i]) * eps) | |
q = args.dynamic_thresholding_quantile | |
if q: | |
shape = x_0.shape | |
x_0_v = x_0.view(shape[0], -1) | |
d = torch.quantile(torch.abs(x_0_v), q, dim=1, keepdim=True) | |
d.clamp_(min=1) | |
x_0_v = x_0_v.clamp(-d, d) / d | |
x_0 = x_0_v.view(shape) | |
x_new = sample_posterior(coefficients, x_0, x[:,:,:,:,j], t) | |
x_new_list.append(x_new) | |
o = torch.stack(x_new_list, axis=-1) | |
#o = o * weighting | |
o = o.view((o.shape[0], -1, o.shape[-1])) | |
decoded = fold(o) | |
decoded = decoded / normalization | |
x = decoded.detach() | |
return x | |
def sample_from_model_clip_guidance(coefficients, generator, clip_model, n_time, x_init, T, opt, texts, cond=None, guidance_scale=0): | |
x = x_init | |
text_features = torch.nn.functional.normalize(clip_model.forward_text(texts), dim=1) | |
n_time = 16 | |
for i in reversed(range(n_time)): | |
t = torch.full((x.size(0),), i%4, dtype=torch.int64).to(x.device) | |
t_time = t | |
latent_z = torch.randn(x.size(0), opt.nz, device=x.device) | |
x.requires_grad = True | |
x_0 = generator(x, t_time, latent_z, cond=cond) | |
x_new = sample_posterior(coefficients, x_0, x, t) | |
x_new_n = (x_new + 1) / 2 | |
image_features = torch.nn.functional.normalize(clip_model.forward_image(x_new_n), dim=1) | |
loss = (image_features*text_features).sum(dim=1).mean() | |
x_grad, = torch.autograd.grad(loss, x) | |
lr = 3000 | |
x = x.detach() | |
print(x.min(),x.max(), lr*x_grad.min(), lr*x_grad.max()) | |
x += x_grad * lr | |
with torch.no_grad(): | |
x_0 = generator(x, t_time, latent_z, cond=cond) | |
x_new = sample_posterior(coefficients, x_0, x, t) | |
x = x_new.detach() | |
print(i) | |
return x | |
def meshgrid(h, w): | |
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) | |
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) | |
arr = torch.cat([y, x], dim=-1) | |
return arr | |
def delta_border(h, w): | |
""" | |
:param h: height | |
:param w: width | |
:return: normalized distance to image border, | |
wtith min distance = 0 at border and max dist = 0.5 at image center | |
""" | |
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) | |
arr = meshgrid(h, w) / lower_right_corner | |
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] | |
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] | |
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] | |
return edge_dist | |
def get_weighting(h, w, Ly, Lx, device, split_input_params): | |
weighting = delta_border(h, w) | |
weighting = torch.clip(weighting, split_input_params["clip_min_weight"], | |
split_input_params["clip_max_weight"], ) | |
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) | |
if split_input_params["tie_braker"]: | |
L_weighting = delta_border(Ly, Lx) | |
L_weighting = torch.clip(L_weighting, | |
split_input_params["clip_min_tie_weight"], | |
split_input_params["clip_max_tie_weight"]) | |
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) | |
weighting = weighting * L_weighting | |
return weighting | |
def get_fold_unfold(x, kernel_size, stride, split_input_params, uf=1, df=1): # todo load once not every time, shorten code | |
""" | |
:param x: img of size (bs, c, h, w) | |
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) | |
""" | |
bs, nc, h, w = x.shape | |
# number of crops in image | |
Ly = (h - kernel_size[0]) // stride[0] + 1 | |
Lx = (w - kernel_size[1]) // stride[1] + 1 | |
if uf == 1 and df == 1: | |
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
unfold = torch.nn.Unfold(**fold_params) | |
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) | |
weighting = get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device, split_input_params).to(x.dtype) | |
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap | |
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) | |
elif uf > 1 and df == 1: | |
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
unfold = torch.nn.Unfold(**fold_params) | |
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), | |
dilation=1, padding=0, | |
stride=(stride[0] * uf, stride[1] * uf)) | |
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) | |
weighting = get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device, split_input_params).to(x.dtype) | |
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap | |
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) | |
elif df > 1 and uf == 1: | |
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
unfold = torch.nn.Unfold(**fold_params) | |
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), | |
dilation=1, padding=0, | |
stride=(stride[0] // df, stride[1] // df)) | |
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) | |
weighting = get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device, split_input_params).to(x.dtype) | |
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap | |
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) | |
else: | |
raise NotImplementedError | |
return fold, unfold, normalization, weighting | |
class ObjectFromDict: | |
def __init__(self, d): | |
self.__dict__ = d | |
def load_model(config, path, device="cpu"): | |
config = ObjectFromDict(config) | |
print(config) | |
text_encoder = build_encoder(name=config.text_encoder, masked_mean=config.masked_mean) | |
print(text_encoder) | |
config.cond_size = text_encoder.output_size | |
netG = NCSNpp(config) | |
print(netG) | |
ckpt = torch.load(path, map_location="cpu") | |
print("CK", ckpt) | |
for key in list(ckpt.keys()): | |
if key.startswith("module"): | |
ckpt[key[7:]] = ckpt.pop(key) | |
netG.load_state_dict(ckpt) | |
netG.eval() | |
netG.pos_coeff = Posterior_Coefficients(config, device) | |
netG.text_encoder = text_encoder | |
netG.config = config | |
netG.time_schedule = get_time_schedule(config, device) | |
netG = netG.to(device) | |
return netG | |
#%% | |
def sample_and_test(args): | |
torch.manual_seed(args.seed) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
to_range_0_1 = lambda x: (x + 1.) / 2. | |
if args.epoch_id == -1: | |
epochs = range(1000) | |
else: | |
epochs = [args.epoch_id] | |
if args.compute_image_reward: | |
#image_reward = RM.load("ImageReward-v1.0", download_root=".").to(device) | |
image_reward = RM.load("ImageReward.pt", download_root=".").to(device) | |
cfg = get_model_config(args.name) | |
for epoch in epochs: | |
args.epoch_id = epoch | |
path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(cfg['dataset'], args.name, args.epoch_id) | |
next_path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(cfg['dataset'], args.name, args.epoch_id+1) | |
print(path) | |
if not os.path.exists(path): | |
continue | |
if not os.path.exists(next_path): | |
break | |
print("PATH", path) | |
suffix = '_' + args.eval_name if args.eval_name else "" | |
dest = './saved_info/dd_gan/{}/{}/eval_{}{}.json'.format(cfg['dataset'], args.name, args.epoch_id, suffix) | |
if (args.compute_fid or args.compute_clip_score or args.compute_image_reward) and os.path.exists(dest): | |
continue | |
print("Load epoch", args.epoch_id, "checkpoint") | |
netG = load_model(cfg, path, device=device) | |
save_dir = "./generated_samples/{}".format(cfg['dataset']) | |
if not os.path.exists(save_dir): | |
os.makedirs(save_dir) | |
if args.compute_fid or args.compute_clip_score or args.compute_image_reward: | |
# Evaluate | |
random.seed(args.seed) | |
texts = open(args.cond_text).readlines() | |
texts = [t.strip() for t in texts] | |
if args.nb_images_for_fid: | |
random.shuffle(texts) | |
texts = texts[0:args.nb_images_for_fid] | |
print("Text size:", len(texts)) | |
i = 0 | |
if args.compute_fid: | |
dims = 2048 | |
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
inceptionv3 = InceptionV3([block_idx]).to(device) | |
if args.compute_clip_score: | |
CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073] | |
CLIP_STD = [0.26862954, 0.26130258, 0.27577711] | |
clip_model, preprocess = clip.load(args.clip_model, device) | |
clip_mean = torch.Tensor(CLIP_MEAN).view(1,-1,1,1).to(device) | |
clip_std = torch.Tensor(CLIP_STD).view(1,-1,1,1).to(device) | |
if args.compute_fid: | |
if not args.real_img_dir.endswith("npz"): | |
real_mu, real_sigma = compute_statistics_of_path( | |
args.real_img_dir, inceptionv3, args.batch_size, dims, device, | |
resize=args.image_size, | |
) | |
np.savez("inception_statistics.npz", mu=real_mu, sigma=real_sigma) | |
else: | |
stats = np.load(args.real_img_dir) | |
real_mu = stats['mu'] | |
real_sigma = stats['sigma'] | |
fake_features = [] | |
if args.compute_clip_score: | |
clip_scores = [] | |
if args.compute_image_reward: | |
image_rewards = [] | |
for b in range(0, len(texts), args.batch_size): | |
text = texts[b:b+args.batch_size] | |
with torch.no_grad(): | |
cond = netG.text_encoder(text) | |
bs = len(text) | |
t0 = time.time() | |
x_t_1 = torch.randn(bs, cfg['num_channels'], cfg['image_size'], cfg['image_size']).to(device) | |
if args.guidance_scale: | |
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale) | |
else: | |
fake_sample = sample(generator=netG, x_init=x_t_1, cond=cond) | |
fake_sample = to_range_0_1(fake_sample) | |
if args.compute_fid: | |
with torch.no_grad(): | |
pred = inceptionv3(fake_sample)[0] | |
# If model output is not scalar, apply global spatial average pooling. | |
# This happens if you choose a dimensionality not equal 2048. | |
if pred.size(2) != 1 or pred.size(3) != 1: | |
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
pred = pred.squeeze(3).squeeze(2).cpu().numpy() | |
fake_features.append(pred) | |
if args.compute_clip_score: | |
with torch.no_grad(): | |
clip_ims = torch.nn.functional.interpolate(fake_sample, (224, 224), mode="bicubic") | |
clip_ims = (clip_ims - clip_mean) / clip_std | |
clip_txt = clip.tokenize(text, truncate=True).to(device) | |
imf = clip_model.encode_image(clip_ims) | |
txtf = clip_model.encode_text(clip_txt) | |
imf = torch.nn.functional.normalize(imf, dim=1) | |
txtf = torch.nn.functional.normalize(txtf, dim=1) | |
clip_scores.append(((imf * txtf).sum(dim=1)).cpu()) | |
if args.compute_image_reward: | |
for k, img in enumerate(fake_sample): | |
img = img.cpu().numpy().transpose(1,2,0) | |
img = img * 255 | |
img = img.astype(np.uint8) | |
text_k = text[k] | |
score = image_reward.score(text_k, img) | |
image_rewards.append(score) | |
if i % 10 == 0: | |
print('evaluating batch ', i, time.time() - t0) | |
#break | |
i += 1 | |
results = {} | |
if args.compute_fid: | |
fake_features = np.concatenate(fake_features) | |
fake_mu = np.mean(fake_features, axis=0) | |
fake_sigma = np.cov(fake_features, rowvar=False) | |
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma) | |
results['fid'] = fid | |
if args.compute_clip_score: | |
clip_score = torch.cat(clip_scores).mean().item() | |
results['clip_score'] = clip_score | |
if args.compute_image_reward: | |
reward = np.mean(image_rewards) | |
results['image_reward'] = reward | |
results.update(vars(args)) | |
with open(dest, "w") as fd: | |
json.dump(results, fd) | |
print(results) | |
else: | |
# just generate some samples | |
if args.cond_text.endswith(".txt"): | |
texts = open(args.cond_text).readlines() | |
texts = [t.strip() for t in texts] | |
else: | |
texts = [args.cond_text] * args.batch_size | |
clip_guidance = False | |
if clip_guidance: | |
cond = text_encoder(texts, return_only_pooled=False) | |
clip_image_model = CLIPImageEncoder().to(device) | |
x_t_1 = torch.randn(len(texts), args.num_channels,args.image_size*args.scale_factor_h, args.image_size*args.scale_factor_w).to(device) | |
fake_sample = sample_from_model_clip_guidance(pos_coeff, netG, clip_image_model, args.num_timesteps, x_t_1,T, args, texts, cond=cond, guidance_scale=args.guidance_scale) | |
fake_sample = to_range_0_1(fake_sample) | |
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset)) | |
else: | |
cond = netG.text_encoder(texts) | |
x_t_1 = torch.randn(len(texts), cfg['num_channels'], cfg['image_size'] * args.scale_factor_h, cfg['image_size'] * args.scale_factor_w).to(device) | |
t0 = time.time() | |
if args.guidance_scale: | |
if args.scale_factor_h > 1 or args.scale_factor_w > 1: | |
if args.scale_method == "convolutional": | |
split_input_params = { | |
"ks": (cfg['image_size'], cfg['image_size']), | |
"stride": (150, 150), | |
"clip_max_tie_weight": 0.5, | |
"clip_min_tie_weight": 0.01, | |
"clip_max_weight": 0.5, | |
"clip_min_weight": 0.01, | |
"tie_braker": True, | |
'vqf': 1, | |
} | |
fake_sample = sample_from_model_classifier_free_guidance_convolutional(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale, split_input_params=split_input_params) | |
elif args.scale_method == "larger_input": | |
netG.attn_resolutions = [r * args.scale_factor_w for r in netG.attn_resolutions] | |
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale) | |
else: | |
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale) | |
else: | |
fake_sample = sample(generator=netG, x_init=x_t_1, cond=cond) | |
print(time.time() - t0) | |
fake_sample = to_range_0_1(fake_sample) | |
torchvision.utils.save_image(fake_sample, 'samples.jpg') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser('ddgan parameters') | |
parser.add_argument('--name', type=str, default="", help="model config name") | |
parser.add_argument('--batch-size', type=int, default=16) | |
parser.add_argument('--seed', type=int, default=1024, help='seed used for initialization') | |
# by default, we just generate samples and save them to samples.jpg | |
# for evaluation, one or several of the following should be set to True | |
parser.add_argument('--compute-fid', action='store_true', default=False, | |
help='whether or not compute FID') | |
parser.add_argument('--compute-clip-score', action='store_true', default=False, | |
help='whether or not compute CLIP score') | |
parser.add_argument('--compute-image-reward', action='store_true', default=False, | |
help='whether or not compute CLIP score') | |
# clip model for clip evaluation | |
parser.add_argument('--clip-model', type=str,default="ViT-L/14") | |
# nb images to use for FID evaluation | |
parser.add_argument('--nb-images-for-fid', type=int, default=0) | |
# eval name to use when saving the evaluation results | |
parser.add_argument('--eval-name', type=str,default="") | |
# epoch to use for evaluation, if -1, iterate over all epochs (for evaluation) | |
parser.add_argument('--epoch-id', type=int,default=-1) | |
parser.add_argument('--guidance-scale', type=float,default=0) | |
parser.add_argument('--dynamic-thresholding-quantile', type=float,default=0) | |
# either a text, or a .txt file, where each line is a prompt | |
parser.add_argument('--scale-factor-h', type=int,default=1) | |
parser.add_argument('--scale-factor-w', type=int,default=1) | |
parser.add_argument('--scale-method', type=str,default="convolutional") | |
parser.add_argument('--cond-text', type=str,default="a chair in the form of an avocado") | |
args = parser.parse_args() | |
sample_and_test(args) | |