text_to_image_ddgan / train_ddgan.py
Mehdi Cherti
add basic cross attention + global attention block
8ab4de9
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import torch
from glob import glob
import argparse
import numpy as np
import json
import os
import time
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10, ImageFolder
from datasets_prep.lsun import LSUN
from datasets_prep.stackmnist_data import StackedMNIST, _data_transforms_stacked_mnist
from datasets_prep.lmdb_datasets import LMDBDataset
from torch.multiprocessing import Process
import torch.distributed as dist
import shutil
import logging
from encoder import build_encoder
from utils import ResampledShards2
from torch.utils.tensorboard import SummaryWriter
def log_and_continue(exn):
logging.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.')
return True
def copy_source(file, output_dir):
shutil.copyfile(file, os.path.join(output_dir, os.path.basename(file)))
def broadcast_params(params):
for param in params:
dist.broadcast(param.data, src=0)
#%% Diffusion coefficients
def var_func_vp(t, beta_min, beta_max):
log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min
var = 1. - torch.exp(2. * log_mean_coeff)
return var
def var_func_geometric(t, beta_min, beta_max):
return beta_min * ((beta_max / beta_min) ** t)
def extract(input, t, shape):
out = torch.gather(input, 0, t)
reshape = [shape[0]] + [1] * (len(shape) - 1)
out = out.reshape(*reshape)
return out
def get_time_schedule(args, device):
n_timestep = args.num_timesteps
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
return t.to(device)
def get_sigma_schedule(args, device):
n_timestep = args.num_timesteps
beta_min = args.beta_min
beta_max = args.beta_max
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
if args.use_geometric:
var = var_func_geometric(t, beta_min, beta_max)
else:
var = var_func_vp(t, beta_min, beta_max)
alpha_bars = 1.0 - var
betas = 1 - alpha_bars[1:] / alpha_bars[:-1]
first = torch.tensor(1e-8)
betas = torch.cat((first[None], betas)).to(device)
betas = betas.type(torch.float32)
sigmas = betas**0.5
a_s = torch.sqrt(1-betas)
return sigmas, a_s, betas
class Diffusion_Coefficients():
def __init__(self, args, device):
self.sigmas, self.a_s, _ = get_sigma_schedule(args, device=device)
self.a_s_cum = np.cumprod(self.a_s.cpu())
self.sigmas_cum = np.sqrt(1 - self.a_s_cum ** 2)
self.a_s_prev = self.a_s.clone()
self.a_s_prev[-1] = 1
self.a_s_cum = self.a_s_cum.to(device)
self.sigmas_cum = self.sigmas_cum.to(device)
self.a_s_prev = self.a_s_prev.to(device)
def q_sample(coeff, x_start, t, *, noise=None):
"""
Diffuse the data (t == 0 means diffused for t step)
"""
if noise is None:
noise = torch.randn_like(x_start)
x_t = extract(coeff.a_s_cum, t, x_start.shape) * x_start + \
extract(coeff.sigmas_cum, t, x_start.shape) * noise
return x_t
def q_sample_pairs(coeff, x_start, t):
"""
Generate a pair of disturbed images for training
:param x_start: x_0
:param t: time step t
:return: x_t, x_{t+1}
"""
noise = torch.randn_like(x_start)
x_t = q_sample(coeff, x_start, t)
x_t_plus_one = extract(coeff.a_s, t+1, x_start.shape) * x_t + \
extract(coeff.sigmas, t+1, x_start.shape) * noise
return x_t, x_t_plus_one
#%% posterior sampling
class Posterior_Coefficients():
def __init__(self, args, device):
_, _, self.betas = get_sigma_schedule(args, device=device)
#we don't need the zeros
self.betas = self.betas.type(torch.float32)[1:]
self.alphas = 1 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, 0)
self.alphas_cumprod_prev = torch.cat(
(torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0
)
self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1)
self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod))
self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod))
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20))
def sample_posterior(coefficients, x_0,x_t, t):
def q_posterior(x_0, x_t, t):
mean = (
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
)
var = extract(coefficients.posterior_variance, t, x_t.shape)
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
return mean, var, log_var_clipped
def p_sample(x_0, x_t, t):
mean, _, log_var = q_posterior(x_0, x_t, t)
noise = torch.randn_like(x_t)
nonzero_mask = (1 - (t == 0).type(torch.float32))
return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise
sample_x_pos = p_sample(x_0, x_t, t)
return sample_x_pos
def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None):
x = x_init
with torch.no_grad():
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
x_0 = generator(x, t_time, latent_z, cond=cond)
x_new = sample_posterior(coefficients, x_0, x, t)
x = x_new.detach()
return x
from contextlib import suppress
def filter_no_caption(sample):
return 'txt' in sample
def get_autocast(precision):
if precision == 'amp':
return torch.cuda.amp.autocast
elif precision == 'amp_bfloat16':
return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16)
else:
return suppress
def train(rank, gpu, args):
from score_sde.models.discriminator import Discriminator_small, Discriminator_large, CondAttnDiscriminator, SmallCondAttnDiscriminator
from score_sde.models.projected_discriminator import ProjectedDiscriminator
from score_sde.models.ncsnpp_generator_adagn import NCSNpp
from EMA import EMA
#torch.manual_seed(args.seed + rank)
#torch.cuda.manual_seed(args.seed + rank)
#torch.cuda.manual_seed_all(args.seed + rank)
device = "cuda"
autocast = get_autocast(args.precision)
batch_size = args.batch_size
nz = args.nz #latent dimension
if args.dataset == 'cifar10':
dataset = CIFAR10('./data', train=True, transform=transforms.Compose([
transforms.Resize(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))]), download=True)
elif args.dataset == 'stackmnist':
train_transform, valid_transform = _data_transforms_stacked_mnist()
dataset = StackedMNIST(root='./data', train=True, download=False, transform=train_transform)
elif args.dataset == 'lsun':
train_transform = transforms.Compose([
transforms.Resize(args.image_size),
transforms.CenterCrop(args.image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
train_data = LSUN(root='/datasets/LSUN/', classes=['church_outdoor_train'], transform=train_transform)
subset = list(range(0, 120000))
dataset = torch.utils.data.Subset(train_data, subset)
elif args.dataset == 'celeba_256':
train_transform = transforms.Compose([
transforms.Resize(args.image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
dataset = LMDBDataset(root='/datasets/celeba-lmdb/', name='celeba', train=True, transform=train_transform)
elif args.dataset == "image_folder":
train_transform = transforms.Compose([
transforms.Resize(args.image_size),
transforms.CenterCrop(args.image_size),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
dataset = ImageFolder(root=args.dataset_root, transform=train_transform)
elif args.dataset == 'wds':
import webdataset as wds
if args.preprocessing == "resize":
train_transform = transforms.Compose([
transforms.Resize(args.image_size),
transforms.CenterCrop(args.image_size),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
elif args.preprocessing == "random_resized_crop_v1":
train_transform = transforms.Compose([
transforms.RandomResizedCrop(args.image_size, scale=(0.95, 1.0), interpolation=3),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
elif args.preprocessing == "simple_random_crop":
train_transform = transforms.Compose([
transforms.RandomCrop(args.image_size, interpolation=3),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
elif args.preprocessing == "simple_random_crop_v2":
train_transform = transforms.Compose([
transforms.Resize(args.image_size),
transforms.RandomCrop(args.image_size, interpolation=3),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
else:
raise ValueError(args.preprocessing)
shards = glob(os.path.join(args.dataset_root, "*.tar")) if os.path.isdir(args.dataset_root) else args.dataset_root
pipeline = [ResampledShards2(shards)]
pipeline.extend([
wds.split_by_node,
wds.split_by_worker,
wds.tarfile_to_samples(handler=log_and_continue),
wds.shuffle(
bufsize=5000,
initial=1000,
),
])
pipeline.extend([
wds.select(filter_no_caption),
wds.decode("pilrgb", handler=log_and_continue),
wds.rename(image="jpg;png;webp"),
wds.map_dict(image=train_transform),
wds.to_tuple("image","txt"),
wds.batched(batch_size, partial=False),
])
dataset = wds.DataPipeline(*pipeline)
data_loader = wds.WebLoader(
dataset,
batch_size=None,
shuffle=False,
num_workers=1,
)
if args.dataset != "wds":
train_sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=args.world_size,
rank=rank
)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
num_workers=4,
drop_last=True,
pin_memory=True,
sampler=train_sampler,
)
text_encoder = build_encoder(name=args.text_encoder, masked_mean=args.masked_mean).to(device)
args.cond_size = text_encoder.output_size
netG = NCSNpp(args).to(device)
nb_params = 0
for param in netG.parameters():
nb_params += param.flatten().shape[0]
print("Number of generator parameters:", nb_params)
if args.discr_type == "small":
netD = Discriminator_small(nc = 2*args.num_channels, ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
act=nn.LeakyReLU(0.2)).to(device)
elif args.discr_type == "small_cond_attn":
netD = SmallCondAttnDiscriminator(nc = 2*args.num_channels, ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
act=nn.LeakyReLU(0.2)).to(device)
elif args.discr_type == "large":
netD = Discriminator_large(nc = 2*args.num_channels, ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
act=nn.LeakyReLU(0.2)).to(device)
elif args.discr_type == "large_attn_pool":
# Discriminator with Attention Pool based discriminator for text conditioning
netD = Discriminator_large(nc = 2*args.num_channels, ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
attn_pool=True,
act=nn.LeakyReLU(0.2)).to(device)
elif args.discr_type == "large_cond_attn":
# Discriminator with Cross-Attention based discriminator for text conditioning
netD = CondAttnDiscriminator(
nc = 2*args.num_channels,
ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
act=nn.LeakyReLU(0.2)).to(device)
elif args.discr_type == "projected_gan":
netD = ProjectedDiscriminator(
num_discs=4,
backbone_kwargs={"cond_size": text_encoder.output_size}
)
netD = netD.to(device)
if args.world_size > 1:
broadcast_params(netG.parameters())
broadcast_params(netD.parameters())
if args.fsdp:
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP
netG = FSDP(
netG,
flatten_parameters=True,
verbose=True,
)
optimizerD = optim.Adam(netD.parameters(), lr=args.lr_d, betas = (args.beta1, args.beta2))
optimizerG = optim.Adam(netG.parameters(), lr=args.lr_g, betas = (args.beta1, args.beta2))
if args.use_ema:
optimizerG = EMA(optimizerG, ema_decay=args.ema_decay, memory_efficient=args.grad_checkpointing)
schedulerG = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerG, args.num_epoch, eta_min=1e-5)
schedulerD = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerD, args.num_epoch, eta_min=1e-5)
if args.fsdp:
netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu])
else:
if args.world_size > 1:
netG = nn.parallel.DistributedDataParallel(netG, device_ids=[gpu])
netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu], find_unused_parameters=args.discr_type=="projected_gan")
#if args.discr_type == "projected_gan":
# netD._set_static_graph()
#if args.grad_checkpointing:
#from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
#netG = checkpoint_wrapper(netG)
exp = args.exp
parent_dir = "./saved_info/dd_gan/{}".format(args.dataset)
exp_path = os.path.join(parent_dir,exp)
if rank == 0:
if not os.path.exists(exp_path):
os.makedirs(exp_path)
copy_source(__file__, exp_path)
shutil.copytree('score_sde/models', os.path.join(exp_path, 'score_sde/models'))
coeff = Diffusion_Coefficients(args, device)
pos_coeff = Posterior_Coefficients(args, device)
T = get_time_schedule(args, device)
checkpoint_file = os.path.join(exp_path, 'content.pth')
if rank == 0:
log_writer = SummaryWriter(exp_path)
if args.resume and os.path.exists(checkpoint_file):
checkpoint = torch.load(checkpoint_file, map_location="cpu")
init_epoch = checkpoint['epoch']
epoch = init_epoch
netG.load_state_dict(checkpoint['netG_dict'])
# load G
optimizerG.load_state_dict(checkpoint['optimizerG'])
schedulerG.load_state_dict(checkpoint['schedulerG'])
# load D
netD.load_state_dict(checkpoint['netD_dict'])
optimizerD.load_state_dict(checkpoint['optimizerD'])
schedulerD.load_state_dict(checkpoint['schedulerD'])
global_step = checkpoint['global_step']
if rank == 0:
print("=> loaded checkpoint (epoch {})"
.format(checkpoint['epoch']))
else:
global_step, epoch, init_epoch = 0, 0, 0
use_cond_attn_discr = args.discr_type in ("large_cond_attn", "small_cond_attn", "large_attn_pool", "projected_gan")
for epoch in range(init_epoch, args.num_epoch+1):
if args.dataset == "wds":
os.environ["WDS_EPOCH"] = str(epoch)
else:
train_sampler.set_epoch(epoch)
for iteration, (x, y) in enumerate(data_loader):
t0 = time.time()
#print(x.shape)
if args.dataset != "wds":
y = [str(yi) for yi in y.tolist()]
if args.classifier_free_guidance_proba:
u = (np.random.uniform(size=len(y)) <= args.classifier_free_guidance_proba).tolist()
y = ["" if ui else yi for yi,ui in zip(y, u)]
with torch.no_grad():
cond_pooled, cond, cond_mask = text_encoder(y, return_only_pooled=False)
for p in netD.parameters():
p.requires_grad = True
netD.zero_grad()
#sample from p(x_0)
real_data = x.to(device, non_blocking=True)
#sample t
t = torch.randint(0, args.num_timesteps, (real_data.size(0),), device=device)
x_t, x_tp1 = q_sample_pairs(coeff, real_data, t)
x_t.requires_grad = True
cond_for_discr = (cond_pooled, cond, cond_mask) if use_cond_attn_discr else cond_pooled
if args.grad_penalty_cond:
if use_cond_attn_discr:
#cond_pooled.requires_grad = True
cond.requires_grad = True
#cond_mask.requires_grad = True
else:
cond_for_discr.requires_grad = True
# train with real
with autocast():
D_real = netD(x_t, t, x_tp1.detach(), cond=cond_for_discr).view(-1)
errD_real = F.softplus(-D_real)
errD_real = errD_real.mean()
errD_real.backward(retain_graph=True)
grad_penalty = None
if args.lazy_reg is None:
if args.grad_penalty_cond:
inputs = (x_t,) + (cond,) if use_cond_attn_discr else (cond_for_discr,)
grad_real = torch.autograd.grad(
outputs=D_real.sum(), inputs=inputs, create_graph=True
)[0]
grad_real = torch.cat([g.view(g.size(0), -1) for g in grad_real])
grad_penalty = (grad_real.norm(2, dim=1) ** 2).mean()
grad_penalty = args.r1_gamma / 2 * grad_penalty
grad_penalty.backward()
else:
grad_real = torch.autograd.grad(
outputs=D_real.sum(), inputs=x_t, create_graph=True
)[0]
grad_penalty = (
grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2
).mean()
grad_penalty = args.r1_gamma / 2 * grad_penalty
grad_penalty.backward()
else:
if global_step % args.lazy_reg == 0:
if args.grad_penalty_cond:
inputs = (x_t,) + (cond,) if use_cond_attn_discr else (cond_for_discr,)
grad_real = torch.autograd.grad(
outputs=D_real.sum(), inputs=inputs, create_graph=True
)[0]
grad_real = torch.cat([g.view(g.size(0), -1) for g in grad_real])
grad_penalty = (grad_real.norm(2, dim=1) ** 2).mean()
grad_penalty = args.r1_gamma / 2 * grad_penalty
grad_penalty.backward()
else:
grad_real = torch.autograd.grad(
outputs=D_real.sum(), inputs=x_t, create_graph=True
)[0]
grad_penalty = (
grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2
).mean()
grad_penalty = args.r1_gamma / 2 * grad_penalty
grad_penalty.backward()
# train with fake
latent_z = torch.randn(batch_size, nz, device=device)
with autocast():
if args.grad_checkpointing:
ginp = x_tp1.detach()
ginp.requires_grad = True
latent_z.requires_grad = True
cond_pooled.requires_grad = True
cond.requires_grad = True
#cond_mask.requires_grad = True
x_0_predict = netG(ginp, t, latent_z, cond=(cond_pooled, cond, cond_mask))
else:
x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_for_discr).view(-1)
errD_fake = F.softplus(output)
errD_fake = errD_fake.mean()
if args.mismatch_loss:
# following https://github.com/tobran/DF-GAN/blob/bc38a4f795c294b09b4ef5579cd4ff78807e5b96/code/lib/modules.py,
# we add a discr loss for (real image, non matching text)
#inds = torch.flip(torch.arange(len(x_t)), dims=(0,))
with autocast():
inds = torch.cat([torch.arange(1,len(x_t)),torch.arange(1)])
cond_for_discr_mis = (cond_pooled[inds], cond[inds], cond_mask[inds]) if use_cond_attn_discr else cond_pooled[inds]
D_real_mis = netD(x_t, t, x_tp1.detach(), cond=cond_for_discr_mis).view(-1)
errD_real_mis = F.softplus(D_real_mis)
errD_real_mis = errD_real_mis.mean()
errD_fake = errD_fake * 0.5 + errD_real_mis * 0.5
errD_fake.backward()
errD = errD_real + errD_fake
# Update D
optimizerD.step()
#update G
for p in netD.parameters():
p.requires_grad = False
netG.zero_grad()
t = torch.randint(0, args.num_timesteps, (real_data.size(0),), device=device)
x_t, x_tp1 = q_sample_pairs(coeff, real_data, t)
latent_z = torch.randn(batch_size, nz,device=device)
with autocast():
if args.grad_checkpointing:
ginp = x_tp1.detach()
ginp.requires_grad = True
latent_z.requires_grad = True
cond_pooled.requires_grad = True
cond.requires_grad = True
#cond_mask.requires_grad = True
x_0_predict = netG(ginp, t, latent_z, cond=(cond_pooled, cond, cond_mask))
else:
x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_for_discr).view(-1)
errG = F.softplus(-output)
errG = errG.mean()
errG.backward()
optimizerG.step()
if (iteration % 10 == 0) and (rank == 0):
log_writer.add_scalar('g_loss', errG.item(), global_step)
log_writer.add_scalar('d_loss', errD.item(), global_step)
if grad_penalty is not None:
log_writer.add_scalar('grad_penalty', grad_penalty.item(), global_step)
global_step += 1
if iteration % 100 == 0:
if rank == 0:
print('epoch {} iteration{}, G Loss: {}, D Loss: {}'.format(epoch,iteration, errG.item(), errD.item()))
print('Global step:', global_step)
dt = time.time() - t0
print('Time per iteration: ', dt)
if iteration % 1000 == 0:
x_t_1 = torch.randn_like(real_data)
with autocast():
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args, cond=(cond_pooled, cond, cond_mask))
if rank == 0:
torchvision.utils.save_image(fake_sample, os.path.join(exp_path, 'sample_discrete_epoch_{}_iteration_{}.png'.format(epoch, iteration)), normalize=True)
if args.save_content:
if args.world_size > 1:
dist.barrier()
if rank == 0:
print('Saving content.')
def to_cpu(d):
for k, v in d.items():
d[k] = v.cpu()
return d
if args.fsdp:
netG_state_dict = to_cpu(netG.state_dict())
netD_state_dict = to_cpu(netD.state_dict())
#netG_optim_state_dict = (netG.gather_full_optim_state_dict(optimizerG))
netG_optim_state_dict = optimizerG.state_dict()
#print(netG_optim_state_dict)
netD_optim_state_dict = (optimizerD.state_dict())
content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
'netG_dict': netG_state_dict, 'optimizerG': netG_optim_state_dict,
'schedulerG': schedulerG.state_dict(), 'netD_dict': netD_state_dict,
'optimizerD': netD_optim_state_dict, 'schedulerD': schedulerD.state_dict()}
if rank == 0:
torch.save(content, os.path.join(exp_path, 'content.pth'))
torch.save(content, os.path.join(exp_path, 'content_backup.pth'))
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
if args.use_ema and rank == 0:
torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch)))
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
#if args.use_ema:
# dist.barrier()
print("Saved content")
else:
if rank == 0:
content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
'netG_dict': netG.state_dict(), 'optimizerG': optimizerG.state_dict(),
'schedulerG': schedulerG.state_dict(), 'netD_dict': netD.state_dict(),
'optimizerD': optimizerD.state_dict(), 'schedulerD': schedulerD.state_dict()}
torch.save(content, os.path.join(exp_path, 'content.pth'))
torch.save(content, os.path.join(exp_path, 'content_backup.pth'))
state_content = {'epoch': epoch + 1, 'global_step': global_step}
with open(os.path.join(exp_path, 'netG_{}.json'.format(epoch)), "w") as fd:
fd.write(json.dumps(state_content))
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch)))
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
if not args.no_lr_decay:
schedulerG.step()
schedulerD.step()
def init_processes(rank, size, fn, args):
""" Initialize the distributed environment. """
import os
if size == 1:
args.rank = 0
args.world_size = 1
args.local_rank = 0
fn(rank,args.local_rank, args)
else:
args.rank = int(os.environ['SLURM_PROCID'])
args.world_size = int(os.getenv("SLURM_NTASKS"))
args.local_rank = int(os.environ['SLURM_LOCALID'])
print(args.rank, args.world_size)
args.master_address = os.getenv("SLURM_LAUNCH_NODE_IPADDR")
os.environ['MASTER_ADDR'] = args.master_address
os.environ['MASTER_PORT'] = "12345"
torch.cuda.set_device(args.local_rank)
gpu = args.local_rank
dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=args.world_size)
fn(rank, gpu, args)
dist.barrier()
cleanup()
def cleanup():
dist.destroy_process_group()
#%%
if __name__ == '__main__':
parser = argparse.ArgumentParser('ddgan parameters')
parser.add_argument('--seed', type=int, default=1024,
help='seed used for initialization')
parser.add_argument('--resume', action='store_true',default=False)
parser.add_argument('--masked_mean', action='store_true',default=False, help="use masked mean to pool from t5-based text encoder")
parser.add_argument('--mismatch_loss', action='store_true',default=False, help="use mismatch loss")
parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
parser.add_argument('--cross_attention', action='store_true',default=False, help="use cross attention in generator")
parser.add_argument('--cross_attention_block', default="basic", help="cross attention block type")
parser.add_argument('--fsdp', action='store_true',default=False, help='use FSDP')
parser.add_argument('--grad_checkpointing', action='store_true',default=False, help='use grad checkpointing')
parser.add_argument('--image_size', type=int, default=32,
help='size of image')
parser.add_argument('--num_channels', type=int, default=3,
help='channel of image')
parser.add_argument('--centered', action='store_false', default=True,
help='-1,1 scale')
parser.add_argument('--use_geometric', action='store_true',default=False)
parser.add_argument('--beta_min', type=float, default= 0.1,
help='beta_min for diffusion')
parser.add_argument('--beta_max', type=float, default=20.,
help='beta_max for diffusion')
parser.add_argument('--classifier_free_guidance_proba', type=float, default=0.0)
parser.add_argument('--num_channels_dae', type=int, default=128,
help='number of initial channels in denosing model generator')
parser.add_argument('--n_mlp', type=int, default=3,
help='number of mlp layers for z')
parser.add_argument('--ch_mult', nargs='+', type=int,
help='channel multiplier')
parser.add_argument('--num_res_blocks', type=int, default=2,
help='number of resnet blocks per scale')
parser.add_argument('--attn_resolutions', default=(16,), nargs='+', type=int,
help='resolution of applying attention')
parser.add_argument('--dropout', type=float, default=0.,
help='drop-out rate')
parser.add_argument('--resamp_with_conv', action='store_false', default=True,
help='always up/down sampling with conv')
parser.add_argument('--conditional', action='store_false', default=True,
help='noise conditional')
parser.add_argument('--fir', action='store_false', default=True,
help='FIR')
parser.add_argument('--fir_kernel', default=[1, 3, 3, 1],
help='FIR kernel')
parser.add_argument('--skip_rescale', action='store_false', default=True,
help='skip rescale')
parser.add_argument('--resblock_type', default='biggan',
help='tyle of resnet block, choice in biggan and ddpm')
parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'],
help='progressive type for output')
parser.add_argument('--progressive_input', type=str, default='residual', choices=['none', 'input_skip', 'residual'],
help='progressive type for input')
parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'],
help='progressive combine method.')
parser.add_argument('--embedding_type', type=str, default='positional', choices=['positional', 'fourier'],
help='type of time embedding')
parser.add_argument('--fourier_scale', type=float, default=16.,
help='scale of fourier transform')
parser.add_argument('--not_use_tanh', action='store_true',default=False)
#geenrator and training
parser.add_argument('--exp', default='experiment_cifar_default', help='name of experiment')
parser.add_argument('--dataset', default='cifar10', help='name of dataset')
parser.add_argument('--dataset_root', default='', help='name of dataset')
parser.add_argument('--nz', type=int, default=100)
parser.add_argument('--num_timesteps', type=int, default=4)
parser.add_argument('--z_emb_dim', type=int, default=256)
parser.add_argument('--t_emb_dim', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=128, help='input batch size')
parser.add_argument('--num_epoch', type=int, default=1200)
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--lr_g', type=float, default=1.5e-4, help='learning rate g')
parser.add_argument('--lr_d', type=float, default=1e-4, help='learning rate d')
parser.add_argument('--beta1', type=float, default=0.5,
help='beta1 for adam')
parser.add_argument('--beta2', type=float, default=0.9,
help='beta2 for adam')
parser.add_argument('--no_lr_decay',action='store_true', default=False)
parser.add_argument('--grad_penalty_cond', action='store_true',default=False, help="cond based grad")
parser.add_argument('--use_ema', action='store_true', default=False,
help='use EMA or not')
parser.add_argument('--ema_decay', type=float, default=0.9999, help='decay rate for EMA')
parser.add_argument('--r1_gamma', type=float, default=0.05, help='coef for r1 reg')
parser.add_argument('--lazy_reg', type=int, default=None,
help='lazy regulariation.')
parser.add_argument('--save_content', action='store_true',default=False)
parser.add_argument('--save_content_every', type=int, default=50, help='save content for resuming every x epochs')
parser.add_argument('--save_ckpt_every', type=int, default=25, help='save ckpt every x epochs')
parser.add_argument('--discr_type', type=str, default="large")
parser.add_argument('--preprocessing', type=str, default="resize")
parser.add_argument('--precision', type=str, default="fp32")
###ddp
parser.add_argument('--num_proc_node', type=int, default=1,
help='The number of nodes in multi node env.')
parser.add_argument('--num_process_per_node', type=int, default=1,
help='number of gpus')
parser.add_argument('--node_rank', type=int, default=0,
help='The index of node.')
parser.add_argument('--local_rank', type=int, default=0,
help='rank of process in the node')
parser.add_argument('--master_address', type=str, default='127.0.0.1',
help='address for master')
args = parser.parse_args()
if 'SLURM_NTASKS' in os.environ:
args.world_size = int(os.getenv("SLURM_NTASKS"))
args.rank = int(os.environ['SLURM_PROCID'])
else:
args.world_size = 1
args.rank = 0
init_processes(args.rank, args.world_size, train, args)