Spaces:
Runtime error
Runtime error
Mehdi Cherti
commited on
Commit
•
640f9c9
1
Parent(s):
972820d
add app file
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
import torchvision
|
7 |
+
from test_ddgan import load_model, sample
|
8 |
+
from model_configs import get_model_config
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
|
11 |
+
def download(filename):
|
12 |
+
return "models/" + filename
|
13 |
+
|
14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
+
models = {
|
16 |
+
"diffusion_db_128ch_1timesteps_openclip_vith14": load_model(get_model_config('ddgan_ddb_v2'), download('diffusion_db_128ch_1timesteps_openclip_vith14.th'), device=device),
|
17 |
+
"diffusion_db_192ch_2timesteps_openclip_vith14": load_model(get_model_config('ddgan_ddb_v3'), download('diffusion_db_192ch_2timesteps_openclip_vith14.th'), device=device),
|
18 |
+
}
|
19 |
+
default = "diffusion_db_128ch_1timesteps_openclip_vith14"
|
20 |
+
|
21 |
+
def gen(md, model_name, md2, text, seed, nb_samples, width, height):
|
22 |
+
torch.manual_seed(int(seed))
|
23 |
+
model = models[model_name]
|
24 |
+
nb_samples = int(nb_samples)
|
25 |
+
height = int(height)
|
26 |
+
width = int(width)
|
27 |
+
with torch.no_grad():
|
28 |
+
cond = model.text_encoder([text]*nb_samples)
|
29 |
+
if text == "":
|
30 |
+
cond[0].normal_()
|
31 |
+
cond[1].normal_()
|
32 |
+
cond[0][1:] = cond[0][0:1]
|
33 |
+
cond[1][1:] = cond[1][0:1]
|
34 |
+
|
35 |
+
x_init = torch.randn(nb_samples, 3, height, width).to(device)
|
36 |
+
fake_sample = sample(model, x_init=x_init, cond=cond)
|
37 |
+
fake_sample = (fake_sample + 1) / 2
|
38 |
+
grid = torchvision.utils.make_grid(fake_sample, nrow=4)
|
39 |
+
grid = grid.permute(1, 2, 0).cpu().numpy()
|
40 |
+
grid = (grid*255).astype("uint8")
|
41 |
+
return Image.fromarray(grid)
|
42 |
+
|
43 |
+
text = """
|
44 |
+
DDGAN
|
45 |
+
"""
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn=gen,
|
48 |
+
inputs=[
|
49 |
+
gr.Markdown(text),
|
50 |
+
# text caption
|
51 |
+
gr.Dropdown(list(models.keys()), value=default),
|
52 |
+
gr.Markdown("If text caption is empty, random CLIP embeddings will be used as input"),
|
53 |
+
gr.Textbox(
|
54 |
+
lines=1,
|
55 |
+
placeholder="Enter text caption here, or leave empty",
|
56 |
+
value="Painting of a hamster king with a crown and a cape in a magical forest."
|
57 |
+
),
|
58 |
+
gr.Number(value=0), # seed
|
59 |
+
gr.Number(value=4), # nb_samples
|
60 |
+
gr.Number(value=256), # width
|
61 |
+
gr.Number(value=256),# height
|
62 |
+
],
|
63 |
+
outputs="image"
|
64 |
+
)
|
65 |
+
iface.launch()
|