Spaces:
Runtime error
Runtime error
Mehdi Cherti
commited on
Commit
•
8d2bdec
1
Parent(s):
23d6920
support fid eval on several epochs
Browse files- test_ddgan.py +139 -108
test_ddgan.py
CHANGED
@@ -130,14 +130,18 @@ def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None
|
|
130 |
def sample_from_model_classifier_free_guidance(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0):
|
131 |
x = x_init
|
132 |
null = text_encoder([""] * len(x_init), return_only_pooled=False)
|
|
|
133 |
with torch.no_grad():
|
134 |
for i in reversed(range(n_time)):
|
135 |
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
136 |
-
|
137 |
t_time = t
|
138 |
-
|
|
|
139 |
|
140 |
x_0_uncond = generator(x, t_time, latent_z, cond=null)
|
|
|
|
|
|
|
141 |
x_0_cond = generator(x, t_time, latent_z, cond=cond)
|
142 |
|
143 |
eps_uncond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
@@ -149,8 +153,8 @@ def sample_from_model_classifier_free_guidance(coefficients, generator, n_time,
|
|
149 |
|
150 |
|
151 |
# Dynamic thresholding
|
152 |
-
q = args.
|
153 |
-
print("Before", x_0.min(), x_0.max())
|
154 |
if q:
|
155 |
shape = x_0.shape
|
156 |
x_0_v = x_0.view(shape[0], -1)
|
@@ -158,7 +162,7 @@ def sample_from_model_classifier_free_guidance(coefficients, generator, n_time,
|
|
158 |
d.clamp_(min=1)
|
159 |
x_0_v = x_0_v.clamp(-d, d) / d
|
160 |
x_0 = x_0_v.view(shape)
|
161 |
-
print("After", x_0.min(), x_0.max())
|
162 |
|
163 |
x_new = sample_posterior(coefficients, x_0, x, t)
|
164 |
|
@@ -197,112 +201,138 @@ def sample_and_test(args):
|
|
197 |
|
198 |
|
199 |
netG = NCSNpp(args).to(device)
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
netG.eval()
|
207 |
-
|
208 |
-
|
209 |
-
T = get_time_schedule(args, device)
|
210 |
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
)
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
"""
|
261 |
-
for j, x in enumerate(fake_sample):
|
262 |
-
index = i * args.batch_size + j
|
263 |
-
torchvision.utils.save_image(x, './generated_samples/{}/{}.jpg'.format(args.dataset, index))
|
264 |
-
"""
|
265 |
with torch.no_grad():
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
else:
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
|
308 |
|
@@ -316,7 +346,7 @@ if __name__ == '__main__':
|
|
316 |
help='whether or not compute FID')
|
317 |
parser.add_argument('--epoch_id', type=int,default=1000)
|
318 |
parser.add_argument('--guidance_scale', type=float,default=0)
|
319 |
-
parser.add_argument('--
|
320 |
parser.add_argument('--cond_text', type=str,default="0")
|
321 |
|
322 |
parser.add_argument('--cross_attention', action='store_true',default=False)
|
@@ -388,6 +418,7 @@ if __name__ == '__main__':
|
|
388 |
parser.add_argument('--batch_size', type=int, default=200, help='sample generating batch size')
|
389 |
parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
|
390 |
parser.add_argument('--masked_mean', action='store_true',default=False)
|
|
|
391 |
|
392 |
|
393 |
|
|
|
130 |
def sample_from_model_classifier_free_guidance(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0):
|
131 |
x = x_init
|
132 |
null = text_encoder([""] * len(x_init), return_only_pooled=False)
|
133 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
134 |
with torch.no_grad():
|
135 |
for i in reversed(range(n_time)):
|
136 |
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
|
|
137 |
t_time = t
|
138 |
+
|
139 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
140 |
|
141 |
x_0_uncond = generator(x, t_time, latent_z, cond=null)
|
142 |
+
|
143 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
144 |
+
|
145 |
x_0_cond = generator(x, t_time, latent_z, cond=cond)
|
146 |
|
147 |
eps_uncond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
|
|
153 |
|
154 |
|
155 |
# Dynamic thresholding
|
156 |
+
q = args.dynamic_thresholding_quantile
|
157 |
+
#print("Before", x_0.min(), x_0.max())
|
158 |
if q:
|
159 |
shape = x_0.shape
|
160 |
x_0_v = x_0.view(shape[0], -1)
|
|
|
162 |
d.clamp_(min=1)
|
163 |
x_0_v = x_0_v.clamp(-d, d) / d
|
164 |
x_0 = x_0_v.view(shape)
|
165 |
+
#print("After", x_0.min(), x_0.max())
|
166 |
|
167 |
x_new = sample_posterior(coefficients, x_0, x, t)
|
168 |
|
|
|
201 |
|
202 |
|
203 |
netG = NCSNpp(args).to(device)
|
204 |
+
|
205 |
+
|
206 |
+
if args.epoch_id == -1:
|
207 |
+
epochs = range(1000)
|
208 |
+
else:
|
209 |
+
epochs = [args.epoch_id]
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
for epoch in epochs:
|
212 |
+
args.epoch_id = epoch
|
213 |
+
path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(args.dataset, args.exp, args.epoch_id)
|
214 |
+
if not os.path.exists(path):
|
215 |
+
continue
|
216 |
+
ckpt = torch.load(path, map_location=device)
|
217 |
+
dest = './saved_info/dd_gan/{}/{}/fid_{}.json'.format(args.dataset, args.exp, args.epoch_id)
|
218 |
+
|
219 |
+
if args.compute_fid and os.path.exists(dest):
|
220 |
+
continue
|
221 |
+
print("Eval Epoch", args.epoch_id)
|
222 |
+
#loading weights from ddp in single gpu
|
223 |
+
for key in list(ckpt.keys()):
|
224 |
+
ckpt[key[7:]] = ckpt.pop(key)
|
225 |
+
netG.load_state_dict(ckpt)
|
226 |
+
netG.eval()
|
227 |
|
228 |
+
|
229 |
+
T = get_time_schedule(args, device)
|
230 |
+
|
231 |
+
pos_coeff = Posterior_Coefficients(args, device)
|
232 |
+
|
233 |
+
|
234 |
+
save_dir = "./generated_samples/{}".format(args.dataset)
|
235 |
+
|
236 |
+
if not os.path.exists(save_dir):
|
237 |
+
os.makedirs(save_dir)
|
238 |
+
|
239 |
+
if args.compute_fid:
|
240 |
+
from torch.nn.functional import adaptive_avg_pool2d
|
241 |
+
from pytorch_fid.fid_score import calculate_activation_statistics, calculate_fid_given_paths, ImagePathDataset, compute_statistics_of_path, calculate_frechet_distance
|
242 |
+
from pytorch_fid.inception import InceptionV3
|
243 |
+
import random
|
244 |
+
random.seed(args.seed)
|
245 |
+
texts = open(args.cond_text).readlines()
|
246 |
+
texts = [t.strip() for t in texts]
|
247 |
+
if args.nb_images_for_fid:
|
248 |
+
random.shuffle(texts)
|
249 |
+
texts = texts[0:args.nb_images_for_fid]
|
250 |
+
#iters_needed = len(texts) // args.batch_size
|
251 |
+
#texts = list(map(lambda s:s.strip(), texts))
|
252 |
+
#ntimes = max(30000 // len(texts), 1)
|
253 |
+
#texts = texts * ntimes
|
254 |
+
print("Text size:", len(texts))
|
255 |
+
#print("Iters:", iters_needed)
|
256 |
+
i = 0
|
257 |
+
dims = 2048
|
258 |
+
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
|
259 |
+
inceptionv3 = InceptionV3([block_idx]).to(device)
|
260 |
+
|
261 |
+
if not args.real_img_dir.endswith("npz"):
|
262 |
+
real_mu, real_sigma = compute_statistics_of_path(
|
263 |
+
args.real_img_dir, inceptionv3, args.batch_size, dims, device,
|
264 |
+
resize=args.image_size,
|
265 |
+
)
|
266 |
+
np.savez("inception_statistics.npz", mu=real_mu, sigma=real_sigma)
|
267 |
+
else:
|
268 |
+
stats = np.load(args.real_img_dir)
|
269 |
+
real_mu = stats['mu']
|
270 |
+
real_sigma = stats['sigma']
|
271 |
+
|
272 |
+
fake_features = []
|
273 |
+
for b in range(0, len(texts), args.batch_size):
|
274 |
+
text = texts[b:b+args.batch_size]
|
|
|
|
|
|
|
|
|
|
|
275 |
with torch.no_grad():
|
276 |
+
cond = text_encoder(text, return_only_pooled=False)
|
277 |
+
bs = len(text)
|
278 |
+
t0 = time.time()
|
279 |
+
x_t_1 = torch.randn(bs, args.num_channels,args.image_size, args.image_size).to(device)
|
280 |
+
if args.guidance_scale:
|
281 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
282 |
+
else:
|
283 |
+
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
|
284 |
+
fake_sample = to_range_0_1(fake_sample)
|
285 |
+
"""
|
286 |
+
for j, x in enumerate(fake_sample):
|
287 |
+
index = i * args.batch_size + j
|
288 |
+
torchvision.utils.save_image(x, './generated_samples/{}/{}.jpg'.format(args.dataset, index))
|
289 |
+
"""
|
290 |
+
with torch.no_grad():
|
291 |
+
pred = inceptionv3(fake_sample)[0]
|
292 |
+
# If model output is not scalar, apply global spatial average pooling.
|
293 |
+
# This happens if you choose a dimensionality not equal 2048.
|
294 |
+
if pred.size(2) != 1 or pred.size(3) != 1:
|
295 |
+
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
|
296 |
+
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
|
297 |
+
fake_features.append(pred)
|
298 |
+
if i % 10 == 0:
|
299 |
+
print('generating batch ', i, time.time() - t0)
|
300 |
+
"""
|
301 |
+
if i % 10 == 0:
|
302 |
+
ff = np.concatenate(fake_features)
|
303 |
+
fake_mu = np.mean(ff, axis=0)
|
304 |
+
fake_sigma = np.cov(ff, rowvar=False)
|
305 |
+
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma)
|
306 |
+
print("FID", fid)
|
307 |
+
"""
|
308 |
+
i += 1
|
309 |
+
|
310 |
+
fake_features = np.concatenate(fake_features)
|
311 |
+
fake_mu = np.mean(fake_features, axis=0)
|
312 |
+
fake_sigma = np.cov(fake_features, rowvar=False)
|
313 |
+
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma)
|
314 |
+
dest = './saved_info/dd_gan/{}/{}/fid_{}.json'.format(args.dataset, args.exp, args.epoch_id)
|
315 |
+
results = {
|
316 |
+
"fid": fid,
|
317 |
+
}
|
318 |
+
results.update(vars(args))
|
319 |
+
with open(dest, "w") as fd:
|
320 |
+
json.dump(results, fd)
|
321 |
+
print('FID = {}'.format(fid))
|
322 |
else:
|
323 |
+
if args.cond_text.endswith(".txt"):
|
324 |
+
texts = open(args.cond_text).readlines()
|
325 |
+
texts = [t.strip() for t in texts]
|
326 |
+
else:
|
327 |
+
texts = [args.cond_text] * args.batch_size
|
328 |
+
cond = text_encoder(texts, return_only_pooled=False)
|
329 |
+
x_t_1 = torch.randn(len(texts), args.num_channels,args.image_size, args.image_size).to(device)
|
330 |
+
if args.guidance_scale:
|
331 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
332 |
+
else:
|
333 |
+
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
|
334 |
+
fake_sample = to_range_0_1(fake_sample)
|
335 |
+
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset))
|
336 |
|
337 |
|
338 |
|
|
|
346 |
help='whether or not compute FID')
|
347 |
parser.add_argument('--epoch_id', type=int,default=1000)
|
348 |
parser.add_argument('--guidance_scale', type=float,default=0)
|
349 |
+
parser.add_argument('--dynamic_thresholding_quantile', type=float,default=0)
|
350 |
parser.add_argument('--cond_text', type=str,default="0")
|
351 |
|
352 |
parser.add_argument('--cross_attention', action='store_true',default=False)
|
|
|
418 |
parser.add_argument('--batch_size', type=int, default=200, help='sample generating batch size')
|
419 |
parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
|
420 |
parser.add_argument('--masked_mean', action='store_true',default=False)
|
421 |
+
parser.add_argument('--nb_images_for_fid', type=int, default=0)
|
422 |
|
423 |
|
424 |
|