Spaces:
Runtime error
Runtime error
Mehdi Cherti
commited on
Commit
·
eb17c34
1
Parent(s):
9916e2b
update
Browse files- app.py +1 -2
- clip_encoder.py +3 -11
- test_ddgan.py +0 -1
- test_ddgan_old.py +685 -0
app.py
CHANGED
@@ -80,5 +80,4 @@ iface = gr.Interface(
|
|
80 |
],
|
81 |
outputs="image"
|
82 |
)
|
83 |
-
|
84 |
-
iface.queue(concurrency_count=8, max_size=100).launch(max_threads=8, debug=True)
|
|
|
80 |
],
|
81 |
outputs="image"
|
82 |
)
|
83 |
+
iface.launch(debug=True)
|
|
clip_encoder.py
CHANGED
@@ -17,23 +17,15 @@ class CLIPEncoder(nn.Module):
|
|
17 |
if os.path.exists(fname):
|
18 |
print(fname)
|
19 |
pretrained = fname
|
20 |
-
#model = "ViT-B-32"
|
21 |
-
#pretrained = "openai"
|
22 |
-
|
23 |
self.model = model
|
24 |
-
|
25 |
self.pretrained = pretrained
|
26 |
-
|
27 |
-
|
28 |
-
self.output_size = 1024
|
29 |
-
#self.output_size = self.model.transformer.width
|
30 |
|
31 |
def forward(self, texts, return_only_pooled=False):
|
32 |
-
return torch.randn(len(texts), self.output_size), torch.randn(len(texts), 77, self.output_size), torch.ones(len(texts), 77).bool()
|
33 |
-
|
34 |
device = next(self.parameters()).device
|
35 |
toks = open_clip.tokenize(texts).to(device)
|
36 |
-
x = self.model.token_embedding(toks)
|
37 |
x = x + self.model.positional_embedding
|
38 |
x = x.permute(1, 0, 2) # NLD -> LND
|
39 |
x = self.model.transformer(x, attn_mask=self.model.attn_mask)
|
|
|
17 |
if os.path.exists(fname):
|
18 |
print(fname)
|
19 |
pretrained = fname
|
|
|
|
|
|
|
20 |
self.model = model
|
|
|
21 |
self.pretrained = pretrained
|
22 |
+
self.model, _, _ = open_clip.create_model_and_transforms(model, pretrained=pretrained)
|
23 |
+
self.output_size = self.model.transformer.width
|
|
|
|
|
24 |
|
25 |
def forward(self, texts, return_only_pooled=False):
|
|
|
|
|
26 |
device = next(self.parameters()).device
|
27 |
toks = open_clip.tokenize(texts).to(device)
|
28 |
+
x = self.model.token_embedding(toks)
|
29 |
x = x + self.model.positional_embedding
|
30 |
x = x.permute(1, 0, 2) # NLD -> LND
|
31 |
x = self.model.transformer(x, attn_mask=self.model.attn_mask)
|
test_ddgan.py
CHANGED
@@ -394,7 +394,6 @@ def load_model(config, path, device="cpu"):
|
|
394 |
print(text_encoder)
|
395 |
config.cond_size = text_encoder.output_size
|
396 |
netG = NCSNpp(config)
|
397 |
-
#print(netG)
|
398 |
print(path, os.path.exists(path))
|
399 |
ckpt = torch.load(path, map_location="cpu")
|
400 |
print("CK", ckpt)
|
|
|
394 |
print(text_encoder)
|
395 |
config.cond_size = text_encoder.output_size
|
396 |
netG = NCSNpp(config)
|
|
|
397 |
print(path, os.path.exists(path))
|
398 |
ckpt = torch.load(path, map_location="cpu")
|
399 |
print("CK", ckpt)
|
test_ddgan_old.py
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ---------------------------------------------------------------
|
2 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
#
|
4 |
+
# This work is licensed under the NVIDIA Source Code License
|
5 |
+
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
|
6 |
+
# ---------------------------------------------------------------
|
7 |
+
import argparse
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
import time
|
11 |
+
import os
|
12 |
+
import json
|
13 |
+
import torchvision
|
14 |
+
from score_sde.models.ncsnpp_generator_adagn import NCSNpp
|
15 |
+
from encoder import build_encoder
|
16 |
+
|
17 |
+
#%% Diffusion coefficients
|
18 |
+
def var_func_vp(t, beta_min, beta_max):
|
19 |
+
log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min
|
20 |
+
var = 1. - torch.exp(2. * log_mean_coeff)
|
21 |
+
return var
|
22 |
+
|
23 |
+
def var_func_geometric(t, beta_min, beta_max):
|
24 |
+
return beta_min * ((beta_max / beta_min) ** t)
|
25 |
+
|
26 |
+
def extract(input, t, shape):
|
27 |
+
out = torch.gather(input, 0, t)
|
28 |
+
reshape = [shape[0]] + [1] * (len(shape) - 1)
|
29 |
+
out = out.reshape(*reshape)
|
30 |
+
|
31 |
+
return out
|
32 |
+
|
33 |
+
def get_time_schedule(args, device):
|
34 |
+
n_timestep = args.num_timesteps
|
35 |
+
eps_small = 1e-3
|
36 |
+
t = np.arange(0, n_timestep + 1, dtype=np.float64)
|
37 |
+
t = t / n_timestep
|
38 |
+
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
|
39 |
+
return t.to(device)
|
40 |
+
|
41 |
+
def get_sigma_schedule(args, device):
|
42 |
+
n_timestep = args.num_timesteps
|
43 |
+
beta_min = args.beta_min
|
44 |
+
beta_max = args.beta_max
|
45 |
+
eps_small = 1e-3
|
46 |
+
|
47 |
+
t = np.arange(0, n_timestep + 1, dtype=np.float64)
|
48 |
+
t = t / n_timestep
|
49 |
+
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
|
50 |
+
|
51 |
+
if args.use_geometric:
|
52 |
+
var = var_func_geometric(t, beta_min, beta_max)
|
53 |
+
else:
|
54 |
+
var = var_func_vp(t, beta_min, beta_max)
|
55 |
+
alpha_bars = 1.0 - var
|
56 |
+
betas = 1 - alpha_bars[1:] / alpha_bars[:-1]
|
57 |
+
|
58 |
+
first = torch.tensor(1e-8)
|
59 |
+
betas = torch.cat((first[None], betas)).to(device)
|
60 |
+
betas = betas.type(torch.float32)
|
61 |
+
sigmas = betas**0.5
|
62 |
+
a_s = torch.sqrt(1-betas)
|
63 |
+
return sigmas, a_s, betas
|
64 |
+
|
65 |
+
#%% posterior sampling
|
66 |
+
class Posterior_Coefficients():
|
67 |
+
def __init__(self, args, device):
|
68 |
+
|
69 |
+
_, _, self.betas = get_sigma_schedule(args, device=device)
|
70 |
+
|
71 |
+
#we don't need the zeros
|
72 |
+
self.betas = self.betas.type(torch.float32)[1:]
|
73 |
+
|
74 |
+
self.alphas = 1 - self.betas
|
75 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, 0)
|
76 |
+
self.alphas_cumprod_prev = torch.cat(
|
77 |
+
(torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0
|
78 |
+
)
|
79 |
+
self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
|
80 |
+
|
81 |
+
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
|
82 |
+
self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod)
|
83 |
+
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1)
|
84 |
+
|
85 |
+
self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod))
|
86 |
+
self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod))
|
87 |
+
|
88 |
+
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20))
|
89 |
+
|
90 |
+
def predict_q_posterior(coefficients, x_0, x_t, t):
|
91 |
+
mean = (
|
92 |
+
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
|
93 |
+
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
|
94 |
+
)
|
95 |
+
var = extract(coefficients.posterior_variance, t, x_t.shape)
|
96 |
+
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
|
97 |
+
return mean, var, log_var_clipped
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
def sample_posterior(coefficients, x_0,x_t, t):
|
102 |
+
|
103 |
+
def q_posterior(x_0, x_t, t):
|
104 |
+
mean = (
|
105 |
+
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
|
106 |
+
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
|
107 |
+
)
|
108 |
+
var = extract(coefficients.posterior_variance, t, x_t.shape)
|
109 |
+
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
|
110 |
+
return mean, var, log_var_clipped
|
111 |
+
|
112 |
+
|
113 |
+
def p_sample(x_0, x_t, t):
|
114 |
+
mean, _, log_var = q_posterior(x_0, x_t, t)
|
115 |
+
|
116 |
+
noise = torch.randn_like(x_t)
|
117 |
+
|
118 |
+
nonzero_mask = (1 - (t == 0).type(torch.float32))
|
119 |
+
|
120 |
+
return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise
|
121 |
+
|
122 |
+
sample_x_pos = p_sample(x_0, x_t, t)
|
123 |
+
|
124 |
+
return sample_x_pos
|
125 |
+
|
126 |
+
def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None):
|
127 |
+
x = x_init
|
128 |
+
with torch.no_grad():
|
129 |
+
for i in reversed(range(n_time)):
|
130 |
+
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
131 |
+
|
132 |
+
t_time = t
|
133 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)#.to(x.device)
|
134 |
+
x_0 = generator(x, t_time, latent_z, cond=cond)
|
135 |
+
x_new = sample_posterior(coefficients, x_0, x, t)
|
136 |
+
x = x_new.detach()
|
137 |
+
|
138 |
+
return x
|
139 |
+
|
140 |
+
|
141 |
+
def sample_from_model_classifier_free_guidance(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0):
|
142 |
+
x = x_init
|
143 |
+
null = text_encoder([""] * len(x_init), return_only_pooled=False)
|
144 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
145 |
+
with torch.no_grad():
|
146 |
+
for i in reversed(range(n_time)):
|
147 |
+
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
148 |
+
t_time = t
|
149 |
+
|
150 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
151 |
+
|
152 |
+
x_0_uncond = generator(x, t_time, latent_z, cond=null)
|
153 |
+
|
154 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
155 |
+
|
156 |
+
x_0_cond = generator(x, t_time, latent_z, cond=cond)
|
157 |
+
|
158 |
+
eps_uncond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
159 |
+
eps_cond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_cond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
160 |
+
|
161 |
+
# eps = eps_uncond + guidance_scale * (eps_cond - eps_uncond)
|
162 |
+
eps = eps_uncond * (1 - guidance_scale) + eps_cond * guidance_scale
|
163 |
+
x_0 = (1/torch.sqrt(coefficients.alphas_cumprod[i])) * (x - torch.sqrt(1 - coefficients.alphas_cumprod[i]) * eps)
|
164 |
+
#x_0 = x_0_uncond * (1 - guidance_scale) + x_0_cond * guidance_scale
|
165 |
+
|
166 |
+
# Dynamic thresholding
|
167 |
+
q = opt.dynamic_thresholding_quantile
|
168 |
+
#print("Before", x_0.min(), x_0.max())
|
169 |
+
if q:
|
170 |
+
shape = x_0.shape
|
171 |
+
x_0_v = x_0.view(shape[0], -1)
|
172 |
+
d = torch.quantile(torch.abs(x_0_v), q, dim=1, keepdim=True)
|
173 |
+
d.clamp_(min=1)
|
174 |
+
x_0_v = x_0_v.clamp(-d, d) / d
|
175 |
+
x_0 = x_0_v.view(shape)
|
176 |
+
#print("After", x_0.min(), x_0.max())
|
177 |
+
|
178 |
+
x_new = sample_posterior(coefficients, x_0, x, t)
|
179 |
+
|
180 |
+
# Dynamic thresholding
|
181 |
+
# q = args.dynamic_thresholding_percentile
|
182 |
+
# shape = x_new.shape
|
183 |
+
# x_new_v = x_new.view(shape[0], -1)
|
184 |
+
# d = torch.quantile(torch.abs(x_new_v), q, dim=1, keepdim=True)
|
185 |
+
# d = torch.maximum(d, torch.ones_like(d))
|
186 |
+
# d.clamp_(min = 1.)
|
187 |
+
# x_new_v = torch.clamp(x_new_v, -d, d) / d
|
188 |
+
# x_new = x_new_v.view(shape)
|
189 |
+
x = x_new.detach()
|
190 |
+
|
191 |
+
return x
|
192 |
+
|
193 |
+
|
194 |
+
def sample_from_model_classifier_free_guidance_convolutional(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0, split_input_params=None):
|
195 |
+
x = x_init
|
196 |
+
null = text_encoder([""] * len(x_init), return_only_pooled=False)
|
197 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
198 |
+
ks = split_input_params["ks"] # eg. (128, 128)
|
199 |
+
stride = split_input_params["stride"] # eg. (64, 64)
|
200 |
+
uf = split_input_params["vqf"]
|
201 |
+
with torch.no_grad():
|
202 |
+
for i in reversed(range(n_time)):
|
203 |
+
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
204 |
+
t_time = t
|
205 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
206 |
+
|
207 |
+
fold, unfold, normalization, weighting = get_fold_unfold(x, ks, stride, split_input_params, uf=uf)
|
208 |
+
x = unfold(x)
|
209 |
+
x = x.view((x.shape[0], -1, ks[0], ks[1], x.shape[-1]))
|
210 |
+
x_new_list = []
|
211 |
+
for j in range(x.shape[-1]):
|
212 |
+
x_0_uncond = generator(x[:,:,:,:,j], t_time, latent_z, cond=null)
|
213 |
+
x_0_cond = generator(x[:,:,:,:,j], t_time, latent_z, cond=cond)
|
214 |
+
|
215 |
+
eps_uncond = (x[:,:,:,:,j] - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
216 |
+
eps_cond = (x[:,:,:,:,j] - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_cond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
217 |
+
|
218 |
+
eps = eps_uncond * (1 - guidance_scale) + eps_cond * guidance_scale
|
219 |
+
x_0 = (1/torch.sqrt(coefficients.alphas_cumprod[i])) * (x[:,:,:,:,j] - torch.sqrt(1 - coefficients.alphas_cumprod[i]) * eps)
|
220 |
+
q = args.dynamic_thresholding_quantile
|
221 |
+
if q:
|
222 |
+
shape = x_0.shape
|
223 |
+
x_0_v = x_0.view(shape[0], -1)
|
224 |
+
d = torch.quantile(torch.abs(x_0_v), q, dim=1, keepdim=True)
|
225 |
+
d.clamp_(min=1)
|
226 |
+
x_0_v = x_0_v.clamp(-d, d) / d
|
227 |
+
x_0 = x_0_v.view(shape)
|
228 |
+
x_new = sample_posterior(coefficients, x_0, x[:,:,:,:,j], t)
|
229 |
+
x_new_list.append(x_new)
|
230 |
+
|
231 |
+
o = torch.stack(x_new_list, axis=-1)
|
232 |
+
#o = o * weighting
|
233 |
+
o = o.view((o.shape[0], -1, o.shape[-1]))
|
234 |
+
decoded = fold(o)
|
235 |
+
decoded = decoded / normalization
|
236 |
+
x = decoded.detach()
|
237 |
+
|
238 |
+
return x
|
239 |
+
|
240 |
+
def sample_from_model_clip_guidance(coefficients, generator, clip_model, n_time, x_init, T, opt, texts, cond=None, guidance_scale=0):
|
241 |
+
x = x_init
|
242 |
+
text_features = torch.nn.functional.normalize(clip_model.forward_text(texts), dim=1)
|
243 |
+
n_time = 16
|
244 |
+
for i in reversed(range(n_time)):
|
245 |
+
t = torch.full((x.size(0),), i%4, dtype=torch.int64).to(x.device)
|
246 |
+
t_time = t
|
247 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
248 |
+
x.requires_grad = True
|
249 |
+
x_0 = generator(x, t_time, latent_z, cond=cond)
|
250 |
+
x_new = sample_posterior(coefficients, x_0, x, t)
|
251 |
+
x_new_n = (x_new + 1) / 2
|
252 |
+
image_features = torch.nn.functional.normalize(clip_model.forward_image(x_new_n), dim=1)
|
253 |
+
loss = (image_features*text_features).sum(dim=1).mean()
|
254 |
+
x_grad, = torch.autograd.grad(loss, x)
|
255 |
+
lr = 3000
|
256 |
+
x = x.detach()
|
257 |
+
print(x.min(),x.max(), lr*x_grad.min(), lr*x_grad.max())
|
258 |
+
x += x_grad * lr
|
259 |
+
|
260 |
+
with torch.no_grad():
|
261 |
+
x_0 = generator(x, t_time, latent_z, cond=cond)
|
262 |
+
x_new = sample_posterior(coefficients, x_0, x, t)
|
263 |
+
|
264 |
+
x = x_new.detach()
|
265 |
+
print(i)
|
266 |
+
return x
|
267 |
+
|
268 |
+
def meshgrid(h, w):
|
269 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
270 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
271 |
+
|
272 |
+
arr = torch.cat([y, x], dim=-1)
|
273 |
+
return arr
|
274 |
+
def delta_border(h, w):
|
275 |
+
"""
|
276 |
+
:param h: height
|
277 |
+
:param w: width
|
278 |
+
:return: normalized distance to image border,
|
279 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
280 |
+
"""
|
281 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
282 |
+
arr = meshgrid(h, w) / lower_right_corner
|
283 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
284 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
285 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
286 |
+
return edge_dist
|
287 |
+
|
288 |
+
def get_weighting(h, w, Ly, Lx, device, split_input_params):
|
289 |
+
weighting = delta_border(h, w)
|
290 |
+
weighting = torch.clip(weighting, split_input_params["clip_min_weight"],
|
291 |
+
split_input_params["clip_max_weight"], )
|
292 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
293 |
+
|
294 |
+
if split_input_params["tie_braker"]:
|
295 |
+
L_weighting = delta_border(Ly, Lx)
|
296 |
+
L_weighting = torch.clip(L_weighting,
|
297 |
+
split_input_params["clip_min_tie_weight"],
|
298 |
+
split_input_params["clip_max_tie_weight"])
|
299 |
+
|
300 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
301 |
+
weighting = weighting * L_weighting
|
302 |
+
return weighting
|
303 |
+
|
304 |
+
def get_fold_unfold(x, kernel_size, stride, split_input_params, uf=1, df=1): # todo load once not every time, shorten code
|
305 |
+
"""
|
306 |
+
:param x: img of size (bs, c, h, w)
|
307 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
308 |
+
"""
|
309 |
+
bs, nc, h, w = x.shape
|
310 |
+
|
311 |
+
# number of crops in image
|
312 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
313 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
314 |
+
|
315 |
+
if uf == 1 and df == 1:
|
316 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
317 |
+
unfold = torch.nn.Unfold(**fold_params)
|
318 |
+
|
319 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
320 |
+
|
321 |
+
weighting = get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device, split_input_params).to(x.dtype)
|
322 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
323 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
324 |
+
|
325 |
+
elif uf > 1 and df == 1:
|
326 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
327 |
+
unfold = torch.nn.Unfold(**fold_params)
|
328 |
+
|
329 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
330 |
+
dilation=1, padding=0,
|
331 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
332 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
333 |
+
|
334 |
+
weighting = get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device, split_input_params).to(x.dtype)
|
335 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
336 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
337 |
+
|
338 |
+
elif df > 1 and uf == 1:
|
339 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
340 |
+
unfold = torch.nn.Unfold(**fold_params)
|
341 |
+
|
342 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
343 |
+
dilation=1, padding=0,
|
344 |
+
stride=(stride[0] // df, stride[1] // df))
|
345 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
346 |
+
|
347 |
+
weighting = get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device, split_input_params).to(x.dtype)
|
348 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
349 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
350 |
+
|
351 |
+
else:
|
352 |
+
raise NotImplementedError
|
353 |
+
|
354 |
+
return fold, unfold, normalization, weighting
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
#%%
|
359 |
+
def sample_and_test(args):
|
360 |
+
torch.manual_seed(args.seed)
|
361 |
+
|
362 |
+
device = 'cuda:0'
|
363 |
+
text_encoder =build_encoder(name=args.text_encoder, masked_mean=args.masked_mean).to(device)
|
364 |
+
args.cond_size = text_encoder.output_size
|
365 |
+
if args.dataset == 'cifar10':
|
366 |
+
real_img_dir = 'pytorch_fid/cifar10_train_stat.npy'
|
367 |
+
elif args.dataset == 'celeba_256':
|
368 |
+
real_img_dir = 'pytorch_fid/celeba_256_stat.npy'
|
369 |
+
elif args.dataset == 'lsun':
|
370 |
+
real_img_dir = 'pytorch_fid/lsun_church_stat.npy'
|
371 |
+
else:
|
372 |
+
real_img_dir = args.real_img_dir
|
373 |
+
|
374 |
+
to_range_0_1 = lambda x: (x + 1.) / 2.
|
375 |
+
|
376 |
+
print(vars(args))
|
377 |
+
netG = NCSNpp(args).to(device)
|
378 |
+
|
379 |
+
if args.epoch_id == -1:
|
380 |
+
epochs = range(1000)
|
381 |
+
else:
|
382 |
+
epochs = [args.epoch_id]
|
383 |
+
|
384 |
+
for epoch in epochs:
|
385 |
+
args.epoch_id = epoch
|
386 |
+
path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(args.dataset, args.exp, args.epoch_id)
|
387 |
+
next_next_path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(args.dataset, args.exp, args.epoch_id+2)
|
388 |
+
if not os.path.exists(path):
|
389 |
+
continue
|
390 |
+
if not os.path.exists(next_next_path):
|
391 |
+
break
|
392 |
+
print(path)
|
393 |
+
|
394 |
+
#if not os.path.exists(next_path):
|
395 |
+
# print(f"STOP at {epoch}")
|
396 |
+
# break
|
397 |
+
try:
|
398 |
+
ckpt = torch.load(path, map_location=device)
|
399 |
+
except Exception:
|
400 |
+
continue
|
401 |
+
suffix = '_' + args.eval_name if args.eval_name else ""
|
402 |
+
dest = './saved_info/dd_gan/{}/{}/eval_{}{}.json'.format(args.dataset, args.exp, args.epoch_id, suffix)
|
403 |
+
next_dest = './saved_info/dd_gan/{}/{}/eval_{}{}.json'.format(args.dataset, args.exp, args.epoch_id+1, suffix)
|
404 |
+
|
405 |
+
if (args.compute_fid or args.compute_clip_score) and os.path.exists(dest):
|
406 |
+
continue
|
407 |
+
print("Eval Epoch", args.epoch_id)
|
408 |
+
#loading weights from ddp in single gpu
|
409 |
+
#print(ckpt.keys())
|
410 |
+
for key in list(ckpt.keys()):
|
411 |
+
if key.startswith("module"):
|
412 |
+
ckpt[key[7:]] = ckpt.pop(key)
|
413 |
+
netG.load_state_dict(ckpt)
|
414 |
+
netG.eval()
|
415 |
+
|
416 |
+
|
417 |
+
T = get_time_schedule(args, device)
|
418 |
+
|
419 |
+
pos_coeff = Posterior_Coefficients(args, device)
|
420 |
+
|
421 |
+
|
422 |
+
save_dir = "./generated_samples/{}".format(args.dataset)
|
423 |
+
|
424 |
+
if not os.path.exists(save_dir):
|
425 |
+
os.makedirs(save_dir)
|
426 |
+
|
427 |
+
if args.compute_fid or args.compute_clip_score:
|
428 |
+
from torch.nn.functional import adaptive_avg_pool2d
|
429 |
+
from pytorch_fid.fid_score import calculate_activation_statistics, calculate_fid_given_paths, ImagePathDataset, compute_statistics_of_path, calculate_frechet_distance
|
430 |
+
from pytorch_fid.inception import InceptionV3
|
431 |
+
import random
|
432 |
+
random.seed(args.seed)
|
433 |
+
texts = open(args.cond_text).readlines()
|
434 |
+
texts = [t.strip() for t in texts]
|
435 |
+
if args.nb_images_for_fid:
|
436 |
+
random.shuffle(texts)
|
437 |
+
texts = texts[0:args.nb_images_for_fid]
|
438 |
+
#iters_needed = len(texts) // args.batch_size
|
439 |
+
#texts = list(map(lambda s:s.strip(), texts))
|
440 |
+
#ntimes = max(30000 // len(texts), 1)
|
441 |
+
#texts = texts * ntimes
|
442 |
+
print("Text size:", len(texts))
|
443 |
+
#print("Iters:", iters_needed)
|
444 |
+
i = 0
|
445 |
+
|
446 |
+
if args.compute_fid:
|
447 |
+
dims = 2048
|
448 |
+
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
|
449 |
+
inceptionv3 = InceptionV3([block_idx]).to(device)
|
450 |
+
|
451 |
+
if args.compute_clip_score:
|
452 |
+
import clip
|
453 |
+
CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
|
454 |
+
CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
|
455 |
+
clip_model, preprocess = clip.load(args.clip_model, device)
|
456 |
+
clip_mean = torch.Tensor(CLIP_MEAN).view(1,-1,1,1).to(device)
|
457 |
+
clip_std = torch.Tensor(CLIP_STD).view(1,-1,1,1).to(device)
|
458 |
+
|
459 |
+
if args.compute_fid:
|
460 |
+
if not args.real_img_dir.endswith("npz"):
|
461 |
+
real_mu, real_sigma = compute_statistics_of_path(
|
462 |
+
args.real_img_dir, inceptionv3, args.batch_size, dims, device,
|
463 |
+
resize=args.image_size,
|
464 |
+
)
|
465 |
+
np.savez("inception_statistics.npz", mu=real_mu, sigma=real_sigma)
|
466 |
+
else:
|
467 |
+
stats = np.load(args.real_img_dir)
|
468 |
+
real_mu = stats['mu']
|
469 |
+
real_sigma = stats['sigma']
|
470 |
+
|
471 |
+
fake_features = []
|
472 |
+
|
473 |
+
if args.compute_clip_score:
|
474 |
+
clip_scores = []
|
475 |
+
|
476 |
+
for b in range(0, len(texts), args.batch_size):
|
477 |
+
text = texts[b:b+args.batch_size]
|
478 |
+
with torch.no_grad():
|
479 |
+
cond = text_encoder(text, return_only_pooled=False)
|
480 |
+
bs = len(text)
|
481 |
+
t0 = time.time()
|
482 |
+
x_t_1 = torch.randn(bs, args.num_channels,args.image_size, args.image_size).to(device)
|
483 |
+
if args.guidance_scale:
|
484 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
485 |
+
else:
|
486 |
+
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
|
487 |
+
fake_sample = to_range_0_1(fake_sample)
|
488 |
+
"""
|
489 |
+
for j, x in enumerate(fake_sample):
|
490 |
+
index = i * args.batch_size + j
|
491 |
+
torchvision.utils.save_image(x, './generated_samples/{}/{}.jpg'.format(args.dataset, index))
|
492 |
+
"""
|
493 |
+
|
494 |
+
if args.compute_fid:
|
495 |
+
with torch.no_grad():
|
496 |
+
pred = inceptionv3(fake_sample)[0]
|
497 |
+
# If model output is not scalar, apply global spatial average pooling.
|
498 |
+
# This happens if you choose a dimensionality not equal 2048.
|
499 |
+
if pred.size(2) != 1 or pred.size(3) != 1:
|
500 |
+
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
|
501 |
+
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
|
502 |
+
fake_features.append(pred)
|
503 |
+
|
504 |
+
if args.compute_clip_score:
|
505 |
+
with torch.no_grad():
|
506 |
+
clip_ims = torch.nn.functional.interpolate(fake_sample, (224, 224), mode="bicubic")
|
507 |
+
clip_ims = (clip_ims - clip_mean) / clip_std
|
508 |
+
clip_txt = clip.tokenize(text, truncate=True).to(device)
|
509 |
+
imf = clip_model.encode_image(clip_ims)
|
510 |
+
txtf = clip_model.encode_text(clip_txt)
|
511 |
+
imf = torch.nn.functional.normalize(imf, dim=1)
|
512 |
+
txtf = torch.nn.functional.normalize(txtf, dim=1)
|
513 |
+
clip_scores.append(((imf * txtf).sum(dim=1)).cpu())
|
514 |
+
|
515 |
+
if i % 10 == 0:
|
516 |
+
print('evaluating batch ', i, time.time() - t0)
|
517 |
+
i += 1
|
518 |
+
|
519 |
+
results = {}
|
520 |
+
if args.compute_fid:
|
521 |
+
fake_features = np.concatenate(fake_features)
|
522 |
+
fake_mu = np.mean(fake_features, axis=0)
|
523 |
+
fake_sigma = np.cov(fake_features, rowvar=False)
|
524 |
+
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma)
|
525 |
+
results['fid'] = fid
|
526 |
+
if args.compute_clip_score:
|
527 |
+
clip_score = torch.cat(clip_scores).mean().item()
|
528 |
+
results['clip_score'] = clip_score
|
529 |
+
results.update(vars(args))
|
530 |
+
with open(dest, "w") as fd:
|
531 |
+
json.dump(results, fd)
|
532 |
+
print(results)
|
533 |
+
else:
|
534 |
+
if args.cond_text.endswith(".txt"):
|
535 |
+
texts = open(args.cond_text).readlines()
|
536 |
+
texts = [t.strip() for t in texts]
|
537 |
+
else:
|
538 |
+
texts = [args.cond_text] * args.batch_size
|
539 |
+
clip_guidance = False
|
540 |
+
if clip_guidance:
|
541 |
+
from clip_encoder import CLIPImageEncoder
|
542 |
+
cond = text_encoder(texts, return_only_pooled=False)
|
543 |
+
clip_image_model = CLIPImageEncoder().to(device)
|
544 |
+
x_t_1 = torch.randn(len(texts), args.num_channels,args.image_size*args.scale_factor_h, args.image_size*args.scale_factor_w).to(device)
|
545 |
+
fake_sample = sample_from_model_clip_guidance(pos_coeff, netG, clip_image_model, args.num_timesteps, x_t_1,T, args, texts, cond=cond, guidance_scale=args.guidance_scale)
|
546 |
+
fake_sample = to_range_0_1(fake_sample)
|
547 |
+
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset))
|
548 |
+
|
549 |
+
else:
|
550 |
+
cond = text_encoder(texts, return_only_pooled=False)
|
551 |
+
x_t_1 = torch.randn(len(texts), args.num_channels,args.image_size*args.scale_factor_h, args.image_size*args.scale_factor_w).to(device)
|
552 |
+
t0 = time.time()
|
553 |
+
if args.guidance_scale:
|
554 |
+
if args.scale_factor_h > 1 or args.scale_factor_w > 1:
|
555 |
+
if args.scale_method == "convolutional":
|
556 |
+
split_input_params = {
|
557 |
+
"ks": (args.image_size, args.image_size),
|
558 |
+
"stride": (150, 150),
|
559 |
+
"clip_max_tie_weight": 0.5,
|
560 |
+
"clip_min_tie_weight": 0.01,
|
561 |
+
"clip_max_weight": 0.5,
|
562 |
+
"clip_min_weight": 0.01,
|
563 |
+
|
564 |
+
"tie_braker": True,
|
565 |
+
'vqf': 1,
|
566 |
+
}
|
567 |
+
fake_sample = sample_from_model_classifier_free_guidance_convolutional(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale, split_input_params=split_input_params)
|
568 |
+
elif args.scale_method == "larger_input":
|
569 |
+
netG.attn_resolutions = [r * args.scale_factor_w for r in netG.attn_resolutions]
|
570 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
571 |
+
else:
|
572 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
573 |
+
else:
|
574 |
+
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
|
575 |
+
|
576 |
+
print(time.time() - t0)
|
577 |
+
fake_sample = to_range_0_1(fake_sample)
|
578 |
+
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset))
|
579 |
+
|
580 |
+
|
581 |
+
|
582 |
+
|
583 |
+
|
584 |
+
|
585 |
+
|
586 |
+
if __name__ == '__main__':
|
587 |
+
parser = argparse.ArgumentParser('ddgan parameters')
|
588 |
+
parser.add_argument('--seed', type=int, default=1024,
|
589 |
+
help='seed used for initialization')
|
590 |
+
parser.add_argument('--compute_fid', action='store_true', default=False,
|
591 |
+
help='whether or not compute FID')
|
592 |
+
parser.add_argument('--compute_clip_score', action='store_true', default=False,
|
593 |
+
help='whether or not compute CLIP score')
|
594 |
+
parser.add_argument('--clip_model', type=str,default="ViT-L/14")
|
595 |
+
parser.add_argument('--eval_name', type=str,default="")
|
596 |
+
|
597 |
+
parser.add_argument('--epoch_id', type=int,default=1000)
|
598 |
+
parser.add_argument('--guidance_scale', type=float,default=0)
|
599 |
+
parser.add_argument('--dynamic_thresholding_quantile', type=float,default=0)
|
600 |
+
parser.add_argument('--cond_text', type=str,default="0")
|
601 |
+
parser.add_argument('--scale_factor_h', type=int,default=1)
|
602 |
+
parser.add_argument('--scale_factor_w', type=int,default=1)
|
603 |
+
parser.add_argument('--scale_method', type=str,default="convolutional")
|
604 |
+
|
605 |
+
parser.add_argument('--cross_attention', action='store_true',default=False)
|
606 |
+
|
607 |
+
|
608 |
+
parser.add_argument('--num_channels', type=int, default=3,
|
609 |
+
help='channel of image')
|
610 |
+
parser.add_argument('--centered', action='store_false', default=True,
|
611 |
+
help='-1,1 scale')
|
612 |
+
parser.add_argument('--use_geometric', action='store_true',default=False)
|
613 |
+
parser.add_argument('--beta_min', type=float, default= 0.1,
|
614 |
+
help='beta_min for diffusion')
|
615 |
+
parser.add_argument('--beta_max', type=float, default=20.,
|
616 |
+
help='beta_max for diffusion')
|
617 |
+
|
618 |
+
|
619 |
+
parser.add_argument('--num_channels_dae', type=int, default=128,
|
620 |
+
help='number of initial channels in denosing model')
|
621 |
+
parser.add_argument('--n_mlp', type=int, default=3,
|
622 |
+
help='number of mlp layers for z')
|
623 |
+
parser.add_argument('--ch_mult', nargs='+', type=int,
|
624 |
+
help='channel multiplier')
|
625 |
+
|
626 |
+
parser.add_argument('--num_res_blocks', type=int, default=2,
|
627 |
+
help='number of resnet blocks per scale')
|
628 |
+
parser.add_argument('--attn_resolutions', default=(16,),
|
629 |
+
help='resolution of applying attention')
|
630 |
+
parser.add_argument('--dropout', type=float, default=0.,
|
631 |
+
help='drop-out rate')
|
632 |
+
parser.add_argument('--resamp_with_conv', action='store_false', default=True,
|
633 |
+
help='always up/down sampling with conv')
|
634 |
+
parser.add_argument('--conditional', action='store_false', default=True,
|
635 |
+
help='noise conditional')
|
636 |
+
parser.add_argument('--fir', action='store_false', default=True,
|
637 |
+
help='FIR')
|
638 |
+
parser.add_argument('--fir_kernel', default=[1, 3, 3, 1],
|
639 |
+
help='FIR kernel')
|
640 |
+
parser.add_argument('--skip_rescale', action='store_false', default=True,
|
641 |
+
help='skip rescale')
|
642 |
+
parser.add_argument('--resblock_type', default='biggan',
|
643 |
+
help='tyle of resnet block, choice in biggan and ddpm')
|
644 |
+
parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'],
|
645 |
+
help='progressive type for output')
|
646 |
+
parser.add_argument('--progressive_input', type=str, default='residual', choices=['none', 'input_skip', 'residual'],
|
647 |
+
help='progressive type for input')
|
648 |
+
parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'],
|
649 |
+
help='progressive combine method.')
|
650 |
+
|
651 |
+
parser.add_argument('--embedding_type', type=str, default='positional', choices=['positional', 'fourier'],
|
652 |
+
help='type of time embedding')
|
653 |
+
parser.add_argument('--fourier_scale', type=float, default=16.,
|
654 |
+
help='scale of fourier transform')
|
655 |
+
parser.add_argument('--not_use_tanh', action='store_true',default=False)
|
656 |
+
|
657 |
+
#geenrator and training
|
658 |
+
parser.add_argument('--exp', default='experiment_cifar_default', help='name of experiment')
|
659 |
+
parser.add_argument('--real_img_dir', default='./pytorch_fid/cifar10_train_stat.npy', help='directory to real images for FID computation')
|
660 |
+
|
661 |
+
parser.add_argument('--dataset', default='cifar10', help='name of dataset')
|
662 |
+
parser.add_argument('--image_size', type=int, default=32,
|
663 |
+
help='size of image')
|
664 |
+
|
665 |
+
parser.add_argument('--nz', type=int, default=100)
|
666 |
+
parser.add_argument('--num_timesteps', type=int, default=4)
|
667 |
+
|
668 |
+
|
669 |
+
parser.add_argument('--z_emb_dim', type=int, default=256)
|
670 |
+
parser.add_argument('--t_emb_dim', type=int, default=256)
|
671 |
+
parser.add_argument('--batch_size', type=int, default=200, help='sample generating batch size')
|
672 |
+
parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
|
673 |
+
parser.add_argument('--masked_mean', action='store_true',default=False)
|
674 |
+
parser.add_argument('--nb_images_for_fid', type=int, default=0)
|
675 |
+
|
676 |
+
|
677 |
+
|
678 |
+
|
679 |
+
|
680 |
+
args = parser.parse_args()
|
681 |
+
|
682 |
+
sample_and_test(args)
|
683 |
+
|
684 |
+
|
685 |
+
|