give-me-a-title / app.py
mehnaazasad's picture
Removed extra/unused code and modified description.
72309c6
# -*- coding: utf-8 -*-
"""app
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1ORnyeMQYmIQwXKecOr52Fr5YOzjrsxvn
"""
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# !pip install gradio transformers==4.28.0 datasets
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from datasets import load_dataset
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("mehnaazasad/bart-large-finetuned-arxiv-co-ga-latest")
model = AutoModelForSeq2SeqLM.from_pretrained("mehnaazasad/bart-large-finetuned-arxiv-co-ga-latest")
dataset = load_dataset("mehnaazasad/arxiv_astro_co_ga")
def summarize(text, temperature):
num_beams = 5
temp = temperature
top_k = 35
top_p = 0.94
inputs = tokenizer(text, return_tensors="pt").input_ids
output = model.generate(inputs, max_length=50,
num_beams=num_beams, temperature=temp,
top_k=top_k, top_p=top_p,
do_sample=True)
title = tokenizer.decode(output[0], skip_special_tokens=True)
return title
title = "Title Generator"
description = """This model was trained to generate a title given scientific paper abstracts.
You can find more details about the fine-tuning of this BART model
[here](https://huggingface.co/mehnaazasad/bart-large-finetuned-arxiv-co-ga-latest).
While default parameter values are shown, feel free to experiment!
<img src="https://adapterhub.ml/static/images/BARTLogo.png" width=200px>
"""
article="[Image credit](https://adapterhub.ml/blog/2021/04/adapters-for-generative-and-seq2seq-models-in-nlp/)"
gr.Interface(
summarize,
[
gr.Textbox(type="text", label="Paste text here"),
gr.Slider(minimum=0.4, maximum=2.0, step=0.2, value=0.7,
label="Temperature: crank this up for more creativity (travel beyond 1 at your own risk!)"),
],
gr.Textbox(type="text", label="Your title is"),
title=title,
description=description,
article=article,
theme="finlaymacklon/boxy_violet",
).launch()