Spaces:
Sleeping
Sleeping
File size: 24,862 Bytes
e5985c6 e5ddac0 e5985c6 64cac75 e5ddac0 053d913 e5ddac0 75c3b48 e5985c6 e5ddac0 e5985c6 e5ddac0 e5985c6 75c3b48 e5985c6 75c3b48 e5985c6 64cac75 e5985c6 75c3b48 e5985c6 e5ddac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import urllib
import streamlit as st
import requests
import re
from stqdm import stqdm
import os
import shutil
import time
from bs4 import BeautifulSoup as bs
from datetime import datetime
from urllib.parse import quote
class XRxivQuery:
def __init__(self, search_query, max_results, folder_name='docs', XRxiv_servers = [], search_by='all', sort_by='relevance'):
self.search_query = search_query
self.max_results = max_results
self.folder_name = folder_name
self.XRxiv_servers = XRxiv_servers
self.search_by = search_by
self.sort_by = sort_by
self.all_pdf_info = []
self.all_pdf_citation = []
def call_API(self):
search_query = self.search_query.strip().replace(" ", "+").split('+')#.replace(", ", "+").replace(",", "+")#.split('+')
if 'rxiv' in self.XRxiv_servers:
'''
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
<entry>\n
<id>http://arxiv.org/abs/2008.04584v2</id>\n
<updated>2021-05-11T12:00:24Z</updated>\n
<published>2020-08-11T08:47:06Z</published>\n
<title>Bayesian Selective Inference: Non-informative Priors</title>\n
<summary> We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n
<author>\n <name>Daniel G. Rasines</name>\n </author>\n <author>\n <name>G. Alastair Young</name>\n </author>\n
<arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n
<link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n
<link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n
<arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
<category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
<category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n
</entry>\n
'''
print('Searching Arxiv\n')
# Call arXiv API
journal = 'arXiv'
# print(" ".join(search_query))
# print(self.search_query.strip().replace(", ", "+").replace(" ", "+").replace(",", "+"))
arXiv_url=f'http://export.arxiv.org/api/query?search_query={self.search_by}:{"+".join(search_query)}&sortBy={self.sort_by}&start=0&max_results={self.max_results}'
# print(arXiv_url)
with urllib.request.urlopen(arXiv_url) as url:
s = url.read()
# Parse the xml data
from lxml import html
root = html.fromstring(s)
# Fetch relevant pdf information
pdf_entries = root.xpath("entry")
pdf_titles = []
pdf_authors = []
pdf_urls = []
pdf_categories = []
folder_names = []
pdf_citation = []
pdf_years = []
for i, pdf in enumerate(pdf_entries):
pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
pdf_authors.append(pdf.xpath("author/name/text()"))
pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
pdf_categories.append(pdf.xpath("category/@term"))
folder_names.append(self.folder_name)
pdf_years.append(pdf.xpath('updated/text()')[0][:4])
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. {journal} [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
# self.all_pdf_citation.append(pdf_citation)
pdf_info = list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
self.all_pdf_info.append(pdf_info)
if 'biorxiv' in self.XRxiv_servers or 'medrxiv' in self.XRxiv_servers:
'''
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
<li class="first last odd search-result result-jcode-medrxiv search-result-highwire-citation">
<div class="highwire-article-citation highwire-citation-type-highwire-article node" data-apath="/medrxiv/early/2021/02/18/2021.02.12.21251663.atom" data-pisa="medrxiv;2021.02.12.21251663v1" data-pisa-master="medrxiv;2021.02.12.21251663" id="node-medrxivearly202102182021021221251663atom1512875027"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix">
<span class="highwire-cite-title">
<a class="highwire-cite-linked-title" data-hide-link-title="0" data-icon-position="" href="http://medrxiv.org/content/early/2021/02/18/2021.02.12.21251663">
<span class="highwire-cite-title">ClinGen Variant Curation Interface: A Variant Classification Platform for the Application of Evidence Criteria from ACMG/AMP Guidelines</span></a> </span>
<div class="highwire-cite-authors"><span class="highwire-citation-authors">
<span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Christine G.</span> <span class="nlm-surname">Preston</span></span>,
<span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Matt W.</span> <span class="nlm-surname">Wright</span></span>,
<span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Rao</span> <span class="nlm-surname">Madhavrao</span></span>,
<div class="highwire-cite-metadata"><span class="highwire-cite-metadata-journal highwire-cite-metadata">medRxiv </span>
<span class="highwire-cite-metadata-pages highwire-cite-metadata">2021.02.12.21251663; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata">
<span class="doi_label">doi:</span> https://doi.org/10.1101/2021.02.12.21251663 </span></div>
<div class="highwire-cite-extras"><div class="hw-make-citation" data-encoded-apath=";medrxiv;early;2021;02;18;2021.02.12.21251663.atom" data-seqnum="0" id="hw-make-citation-0">
<a class="link-save-citation-save use-ajax hw-link-save-unsave-catation link-icon" href="/highwire-save-citation/saveapath/%3Bmedrxiv%3Bearly%3B2021%3B02%3B18%3B2021.02.12.21251663.atom/nojs/0" id="link-save-citation-toggle-0" title="Save">
<span class="icon-plus"></span> <span class="title">Add to Selected Citations</span></a></div></div>
</div>
</div></li>
</entry>\n
'''
if 'biorxiv' in self.XRxiv_servers and 'medrxiv' not in self.XRxiv_servers:
print('Searching biorxiv\n')
journals_str = f'%20jcode%3Abiorxiv'
if 'biorxiv' not in self.XRxiv_servers and 'medrxiv' in self.XRxiv_servers:
print('Searching medrxiv\n')
journals_str = f'%20jcode%3Amedrxiv'
if 'biorxiv' in self.XRxiv_servers and 'medrxiv' in self.XRxiv_servers:
print('Searching both biorxiv and medrxiv\n')
journals_str = f'%20jcode%3Abiorxiv%7C%7Cmedrxiv'
subject_str = ('%20').join(self.search_query[0].split())
for subject in search_query[1:]:
subject_str = subject_str + '%252B' + ('%20').join(subject.split())
current_dateTime = datetime.now()
today = str(current_dateTime)[:10]
start_day = '2013-01-01'
arXiv_url = f'https://www.biorxiv.org/search/'
arXiv_url += subject_str + journals_str + f'%20limit_from%3A2{start_day}%20limit_to%3A{today}%20numresults%3A{self.max_results}%20sort%3Arelevance-rank%20format_result%3Astandard'
url_response = requests.post(arXiv_url)
html = bs(url_response.text, features='html.parser')
pdf_entries = html.find_all(attrs={'class': 'search-result'})
pdf_titles = []
pdf_authors = []
pdf_urls = []
pdf_categories = []
folder_names = []
pdf_citation = []
pdf_years = []
for i, pdf in enumerate(pdf_entries):
pdf_titles.append(pdf.find('span', attrs={'class': 'highwire-cite-title'}).text.strip())
pdf_authors.append(pdf.find('span', attrs={'class': 'highwire-citation-authors'}).text.strip().split(', '))
pdf_url = pdf.find('a', href=True)['href']
if pdf_url[:4] != 'http':
pdf_url = f'http://www.biorxiv.org'+ pdf_url
pdf_urls.append(pdf_url)
pdf_categories.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-journal highwire-cite-metadata'}).text.strip())
folder_names.append(self.folder_name)
pdf_years.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-pages highwire-cite-metadata'}).text.strip()[:4])
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. {pdf_categories[i]} ({pdf_years[i]}), (available at {pdf_urls[i]}).")
pdf_info = list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
self.all_pdf_info.append(pdf_info)
self.all_pdf_info = [item for sublist in self.all_pdf_info for item in sublist]
print(self.all_pdf_info)
return self.all_pdf_info
def download_pdf(self):
# if len(os.listdir(f'./{folder_name}') ) != 0:
# check folder is empty to avoid using papers from old runs:
# os.remove(f'./{folder_name}/*')
# print(pdf_info)
all_reference_text = []
for i,p in enumerate(stqdm(self.all_pdf_info, desc='π Searching and downloading papers')):
pdf_title=p[0]
pdf_category=p[3]
pdf_url=p[1]
if pdf_category in ['medRxiv', 'bioRxiv']:
pdf_url += '.full.pdf'
pdf_file_name=p[0].replace(':','').replace('/','').replace('.','')
folder_name=p[4]
pdf_citation=p[5]
r = requests.get(pdf_url, allow_redirects=True)
if i == 0:
if not os.path.exists(f'{folder_name}'):
os.makedirs(f"{folder_name}")
else:
shutil.rmtree(f'{folder_name}')
os.makedirs(f"{folder_name}")
with open(f'{folder_name}/{pdf_file_name}.pdf', 'wb') as f:
f.write(r.content)
if i == 0:
st.markdown("###### Papers found:")
st.markdown(f"{i+1}. {pdf_citation}")
time.sleep(0.15)
all_reference_text.append(f"{i+1}. {pdf_citation}\n")
if 'all_reference_text' not in st.session_state:
st.session_state.key = 'all_reference_text'
st.session_state['all_reference_text'] = ' '.join(all_reference_text)
def call_arXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='docs'):
'''
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
<entry>\n
<id>http://arxiv.org/abs/2008.04584v2</id>\n
<updated>2021-05-11T12:00:24Z</updated>\n
<published>2020-08-11T08:47:06Z</published>\n
<title>Bayesian Selective Inference: Non-informative Priors</title>\n
<summary> We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n
<author>\n <name>Daniel G. Rasines</name>\n </author>\n <author>\n <name>G. Alastair Young</name>\n </author>\n
<arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n
<link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n
<link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n
<arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
<category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
<category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n
</entry>\n
'''
# Remove space in seach query
search_query=search_query.strip().replace(" ", "+").replace(", ","+").replace(",","+")
# Call arXiv API
arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
with urllib.request.urlopen(arXiv_url) as url:
s = url.read()
from lxml import html
# Parse the xml data
root = html.fromstring(s)
# Fetch relevant pdf information
pdf_entries = root.xpath("entry")
pdf_titles = []
pdf_authors = []
pdf_urls = []
pdf_categories = []
folder_names = []
pdf_citation = []
pdf_years = []
for i, pdf in enumerate(pdf_entries):
pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
pdf_authors.append(pdf.xpath("author/name/text()"))
pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
pdf_categories.append(pdf.xpath("category/@term"))
folder_names.append(folder_name)
pdf_years.append(pdf.xpath('updated/text()')[0][:4])
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. arXiv [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
# Check number of available files
if len(pdf_urls)<int(max_results):
matching_pdf_num=len(pdf_urls)
# print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
return pdf_info, pdf_citation
def download_pdf(pdf_info):
# if len(os.listdir(f'./{folder_name}') ) != 0:
# check folder is empty to avoid using papers from old runs:
# os.remove(f'./{folder_name}/*')
# print(pdf_info)
all_reference_text = []
for i,p in enumerate(stqdm(pdf_info, desc='Searching and downloading papers')):
pdf_title=p[0].replace(':','').replace('/','').replace('.','')
pdf_category=p[3]
pdf_url=p[1]
if pdf_category in ['medRxiv', 'bioRxiv']:
pdf_url += '.full.pdf'
pdf_author=p[2]
folder_name=p[4]
pdf_citation=p[5]
r = requests.get(pdf_url, allow_redirects=True)
if i == 0:
if not os.path.exists(f'{folder_name}'):
os.makedirs(f"{folder_name}")
else:
shutil.rmtree(f'{folder_name}')
os.makedirs(f"{folder_name}")
with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as f:
f.write(r.content)
if i == 0:
st.markdown("###### Papers found:")
st.markdown(f"{i+1}. {pdf_citation}")
time.sleep(0.15)
all_reference_text.append(f"{i+1}. {pdf_citation}\n")
if 'all_reference_text' not in st.session_state:
st.session_state.key = 'all_reference_text'
st.session_state['all_reference_text'] = ' '.join(all_reference_text)
def call_bioArXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='docs'):
'''
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
<li class="first last odd search-result result-jcode-medrxiv search-result-highwire-citation">
<div class="highwire-article-citation highwire-citation-type-highwire-article node" data-apath="/medrxiv/early/2021/02/18/2021.02.12.21251663.atom" data-pisa="medrxiv;2021.02.12.21251663v1" data-pisa-master="medrxiv;2021.02.12.21251663" id="node-medrxivearly202102182021021221251663atom1512875027"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix">
<span class="highwire-cite-title">
<a class="highwire-cite-linked-title" data-hide-link-title="0" data-icon-position="" href="http://medrxiv.org/content/early/2021/02/18/2021.02.12.21251663">
<span class="highwire-cite-title">ClinGen Variant Curation Interface: A Variant Classification Platform for the Application of Evidence Criteria from ACMG/AMP Guidelines</span></a> </span>
<div class="highwire-cite-authors"><span class="highwire-citation-authors">
<span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Christine G.</span> <span class="nlm-surname">Preston</span></span>,
<span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Matt W.</span> <span class="nlm-surname">Wright</span></span>,
<span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Rao</span> <span class="nlm-surname">Madhavrao</span></span>,
<div class="highwire-cite-metadata"><span class="highwire-cite-metadata-journal highwire-cite-metadata">medRxiv </span>
<span class="highwire-cite-metadata-pages highwire-cite-metadata">2021.02.12.21251663; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata">
<span class="doi_label">doi:</span> https://doi.org/10.1101/2021.02.12.21251663 </span></div>
<div class="highwire-cite-extras"><div class="hw-make-citation" data-encoded-apath=";medrxiv;early;2021;02;18;2021.02.12.21251663.atom" data-seqnum="0" id="hw-make-citation-0">
<a class="link-save-citation-save use-ajax hw-link-save-unsave-catation link-icon" href="/highwire-save-citation/saveapath/%3Bmedrxiv%3Bearly%3B2021%3B02%3B18%3B2021.02.12.21251663.atom/nojs/0" id="link-save-citation-toggle-0" title="Save">
<span class="icon-plus"></span> <span class="title">Add to Selected Citations</span></a></div></div>
</div>
</div></li>
</entry>\n
'''
# Remove space in seach query
search_query=search_query.strip().replace(", ", "+").replace(" ", "+").replace(",", "+").split('+')
subject_str = ('%20').join(search_query[0].split())
for subject in search_query[1:]:
subject_str = subject_str + '%252B' + ('%20').join(subject.split())
# print(subject_str)
# Call arXiv API
# bio_arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
# "https://api.biorxiv.org"
current_dateTime = datetime.now()
today = str(current_dateTime)[:10]
journal = 'biorxiv'
# journals_str = '%20jcode%3Amedrxiv%7C%7Cbiorxiv'
bio_arXiv_url = f'https://www.biorxiv.org/search/'
# kwd_str = 'abstract_title%3A' + ('%252C%2B').join([search_query[0]] + [('%2B').join(keyword.split()) for keyword in search_query[1:]])
# print(kwd_str)
# kwd_str = kwd_str + '%20abstract_title_flags%3Amatch-' + 'all'
# bio_arXiv_url += '%20' + kwd_str
launch_dates = {"biorxiv": "2013-01-01", "medrxiv": "2019-06-01"}
both = False
bio_only = True
med_only = False
if bio_only:
print('https://www.biorxiv.org/search/serverless%252Bcomputing%252Bbioinformatics%20jcode%3Abiorxiv%20limit_from%3A2021-06-13%20limit_to%3A2023-02-17%20numresults%3A25%20sort%3Arelevance-rank%20format_result%3Astandard\n bio_only')
journal = 'biorxiv'
journals_str = f'%20jcode%3A{journal}'
if both:
# print('https://www.biorxiv.org/search/serverless%252Bcomputing%252Bbioinformatics%20jcode%3Amedrxiv%7C%7Cbiorxiv%20limit_from%3A2022-11-06%20limit_to%3A2023-02-17%20numresults%3A10%20sort%3Arelevance-rank%20format_result%3Astandard\n both')
journal = 'biorxiv'
journals_str = f'%20jcode%3A{journal}%7C%7Cmedrxiv'
if med_only:
# print('https://www.biorxiv.org/search/serverless%252Bcomputing%252Bbioinformatics%20jcode%3Amedrxiv%20limit_from%3A2021-06-13%20limit_to%3A2023-02-17%20numresults%3A10%20sort%3Arelevance-rank%20format_result%3Astandard\n med_only')
journal = 'medrxiv'
journals_str = f'%20jcode%3A{journal}'
start_day = launch_dates[journal]
bio_arXiv_url += subject_str + journals_str + f'%20limit_from%3A2{start_day}%20limit_to%3A{today}%20numresults%3A{max_results}%20sort%3Arelevance-rank%20format_result%3Astandard'
# print(bio_arXiv_url)
url_response = requests.post(bio_arXiv_url)
html = bs(url_response.text, features='html.parser')
pdf_entries = html.find_all(attrs={'class': 'search-result'})
# print(articles)
# with urllib.request.urlopen(bio_arXiv_url) as url:
# s = url.read()
# # Parse the xml data
# root = html.fromstring(s)
# # Fetch relevant pdf information
# pdf_entries = root.xpath("entry")
# print(pdf_entries)
pdf_titles = []
pdf_authors = []
pdf_urls = []
pdf_categories = []
folder_names = []
pdf_citation = []
pdf_years = []
for i, pdf in enumerate(pdf_entries):
# print(pdf.xpath('updated/text()')[0][:4])
# xpath return a list with every ocurrence of the html path. Since we're getting each entry individually, we'll take the first element to avoid an unecessary list
# print(pdf)
# [article.find('span', attrs={'class': 'highwire-cite-title'}).text.strip() if article.find('span', attrs={'class': 'highwire-cite-title'}) is not None else None for article in articles]
pdf_titles.append(pdf.find('span', attrs={'class': 'highwire-cite-title'}).text.strip())
# print(pdf.find('span', attrs={'class': 'highwire-citation-authors'}).text.strip())
pdf_authors.append(pdf.find('span', attrs={'class': 'highwire-citation-authors'}).text.strip().split(', '))
# print(pdf_authors)
# print(f'http://www.{journal}.org')
pdf_url = pdf.find('a', href=True)['href']
if pdf_url[:4] != 'http':
pdf_url = f'http://www.biorxiv.org'+ pdf_url
pdf_urls.append(pdf_url)
pdf_categories.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-journal highwire-cite-metadata'}).text.strip())
# print(pdf_categories)
folder_names.append(folder_name)
pdf_years.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-pages highwire-cite-metadata'}).text.strip()[:4])
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. {pdf_categories[i]} ({pdf_years[i]}), (available at {pdf_urls[i]}).")
# print(pdf_citation)
# break
pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
# Check number of available files
print('Requesting {max_results} files'.format(max_results=max_results))
if len(pdf_urls)<int(max_results):
matching_pdf_num=len(pdf_urls)
print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
return pdf_info
import urllib.request as urllib2
def download_bio_pdf(pdf_info):
for p in tqdm(pdf_info):
pdf_title=p[0].replace(':','').replace('/','-').replace('.','')
pdf_url=p[1] + '.full.pdf'
# print(pdf_url)
pdf_author=p[2]
pdf_category=p[3]
print(pdf_category)
folder_name=p[4]
pdf_citation=p[5]
r = requests.get(pdf_url, allow_redirects=True)
# print(r)
print(pdf_url)
# r = requests.get(pdf_url, stream=True)
if not os.path.exists(folder_name):
os.makedirs(f"{folder_name}")
with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as f:
f.write(r.content)
|