File size: 24,862 Bytes
e5985c6
 
 
 
 
 
 
 
e5ddac0
 
 
e5985c6
64cac75
e5ddac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
053d913
e5ddac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75c3b48
e5985c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5ddac0
e5985c6
 
 
 
e5ddac0
 
e5985c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75c3b48
e5985c6
 
75c3b48
e5985c6
64cac75
 
 
 
e5985c6
 
 
 
 
 
 
 
 
75c3b48
 
e5985c6
 
 
 
 
 
 
 
e5ddac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import urllib
import streamlit as st 
import requests
import re
from stqdm import stqdm
import os
import shutil
import time
from bs4 import BeautifulSoup as bs
from datetime import datetime
from urllib.parse import quote


class XRxivQuery:
    def __init__(self, search_query, max_results, folder_name='docs', XRxiv_servers = [], search_by='all', sort_by='relevance'):
       self.search_query = search_query
       self.max_results = max_results
       self.folder_name = folder_name
       self.XRxiv_servers = XRxiv_servers
       self.search_by = search_by
       self.sort_by = sort_by
       self.all_pdf_info = []
       self.all_pdf_citation = []

    def call_API(self):
        search_query = self.search_query.strip().replace(" ", "+").split('+')#.replace(", ", "+").replace(",", "+")#.split('+')
        if 'rxiv' in self.XRxiv_servers:
            '''
            Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
            <entry>\n    
            <id>http://arxiv.org/abs/2008.04584v2</id>\n    
            <updated>2021-05-11T12:00:24Z</updated>\n    
            <published>2020-08-11T08:47:06Z</published>\n    
            <title>Bayesian Selective Inference: Non-informative Priors</title>\n    
            <summary>  We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n    
            <author>\n      <name>Daniel G. Rasines</name>\n    </author>\n    <author>\n      <name>G. Alastair Young</name>\n    </author>\n    
            <arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n    
            <link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n    
            <link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n    
            <arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n    
            <category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n    
            <category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n  
            </entry>\n  
            '''
            print('Searching Arxiv\n')
            # Call arXiv API
            journal = 'arXiv'
            # print(" ".join(search_query))
            # print(self.search_query.strip().replace(", ", "+").replace(" ", "+").replace(",", "+"))
            arXiv_url=f'http://export.arxiv.org/api/query?search_query={self.search_by}:{"+".join(search_query)}&sortBy={self.sort_by}&start=0&max_results={self.max_results}'
            # print(arXiv_url)
            with urllib.request.urlopen(arXiv_url) as url:
                s = url.read()
            
            # Parse the xml data
            from lxml import html
            root = html.fromstring(s)
            # Fetch relevant pdf information
            pdf_entries = root.xpath("entry")
            pdf_titles   = []
            pdf_authors  = []
            pdf_urls     = []
            pdf_categories = []
            folder_names = []
            pdf_citation = []
            pdf_years = []
            for i, pdf in enumerate(pdf_entries):
                pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
                pdf_authors.append(pdf.xpath("author/name/text()"))
                pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
                pdf_categories.append(pdf.xpath("category/@term"))
                folder_names.append(self.folder_name)
                pdf_years.append(pdf.xpath('updated/text()')[0][:4])
                pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. {journal} [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
            # self.all_pdf_citation.append(pdf_citation)
            pdf_info = list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
            self.all_pdf_info.append(pdf_info)

        if 'biorxiv' in self.XRxiv_servers or 'medrxiv' in self.XRxiv_servers:
            '''
            Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
            <li class="first last odd search-result result-jcode-medrxiv search-result-highwire-citation">
            <div class="highwire-article-citation highwire-citation-type-highwire-article node" data-apath="/medrxiv/early/2021/02/18/2021.02.12.21251663.atom" data-pisa="medrxiv;2021.02.12.21251663v1" data-pisa-master="medrxiv;2021.02.12.21251663" id="node-medrxivearly202102182021021221251663atom1512875027"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix">
            <span class="highwire-cite-title">
            <a class="highwire-cite-linked-title" data-hide-link-title="0" data-icon-position="" href="http://medrxiv.org/content/early/2021/02/18/2021.02.12.21251663">
            <span class="highwire-cite-title">ClinGen Variant Curation Interface: A Variant Classification Platform for the Application of Evidence Criteria from ACMG/AMP Guidelines</span></a> </span>
            <div class="highwire-cite-authors"><span class="highwire-citation-authors">
            <span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Christine G.</span> <span class="nlm-surname">Preston</span></span>,
            <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Matt W.</span> <span class="nlm-surname">Wright</span></span>, 
            <span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Rao</span> <span class="nlm-surname">Madhavrao</span></span>, 
            <div class="highwire-cite-metadata"><span class="highwire-cite-metadata-journal highwire-cite-metadata">medRxiv </span>
            <span class="highwire-cite-metadata-pages highwire-cite-metadata">2021.02.12.21251663; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata">
            <span class="doi_label">doi:</span> https://doi.org/10.1101/2021.02.12.21251663 </span></div>
            <div class="highwire-cite-extras"><div class="hw-make-citation" data-encoded-apath=";medrxiv;early;2021;02;18;2021.02.12.21251663.atom" data-seqnum="0" id="hw-make-citation-0">
            <a class="link-save-citation-save use-ajax hw-link-save-unsave-catation link-icon" href="/highwire-save-citation/saveapath/%3Bmedrxiv%3Bearly%3B2021%3B02%3B18%3B2021.02.12.21251663.atom/nojs/0" id="link-save-citation-toggle-0" title="Save">
            <span class="icon-plus"></span> <span class="title">Add to Selected Citations</span></a></div></div>
            </div>
            </div></li> 
            </entry>\n  
            '''
            if 'biorxiv' in self.XRxiv_servers and 'medrxiv' not in self.XRxiv_servers:
                print('Searching biorxiv\n')
                journals_str = f'%20jcode%3Abiorxiv'
            if 'biorxiv' not in self.XRxiv_servers and 'medrxiv' in self.XRxiv_servers:
                print('Searching medrxiv\n')
                journals_str = f'%20jcode%3Amedrxiv'
            if 'biorxiv' in self.XRxiv_servers and 'medrxiv' in self.XRxiv_servers:
                print('Searching both biorxiv and medrxiv\n')
                journals_str = f'%20jcode%3Abiorxiv%7C%7Cmedrxiv'
            
            subject_str = ('%20').join(self.search_query[0].split())
            for subject in search_query[1:]:
                subject_str = subject_str + '%252B' + ('%20').join(subject.split())
            
            current_dateTime = datetime.now()
            today = str(current_dateTime)[:10]
            start_day = '2013-01-01'
            arXiv_url = f'https://www.biorxiv.org/search/'
            arXiv_url += subject_str + journals_str + f'%20limit_from%3A2{start_day}%20limit_to%3A{today}%20numresults%3A{self.max_results}%20sort%3Arelevance-rank%20format_result%3Astandard'

            url_response = requests.post(arXiv_url)
            html = bs(url_response.text, features='html.parser')
            pdf_entries = html.find_all(attrs={'class': 'search-result'})
            pdf_titles   = []
            pdf_authors  = []
            pdf_urls     = []
            pdf_categories = []
            folder_names = []
            pdf_citation = []
            pdf_years = []
            for i, pdf in enumerate(pdf_entries):
                pdf_titles.append(pdf.find('span', attrs={'class': 'highwire-cite-title'}).text.strip())
                pdf_authors.append(pdf.find('span', attrs={'class': 'highwire-citation-authors'}).text.strip().split(', '))
                
                pdf_url = pdf.find('a', href=True)['href']
                if pdf_url[:4] != 'http':
                    pdf_url = f'http://www.biorxiv.org'+ pdf_url
                pdf_urls.append(pdf_url)
                pdf_categories.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-journal highwire-cite-metadata'}).text.strip())
                folder_names.append(self.folder_name)
                pdf_years.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-pages highwire-cite-metadata'}).text.strip()[:4])
                pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. {pdf_categories[i]} ({pdf_years[i]}), (available at {pdf_urls[i]}).")

            pdf_info = list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
            self.all_pdf_info.append(pdf_info)

        self.all_pdf_info = [item for sublist in self.all_pdf_info for item in sublist]
        print(self.all_pdf_info)
        return self.all_pdf_info

    def download_pdf(self):
        # if len(os.listdir(f'./{folder_name}') ) != 0:
                # check folder is empty to avoid using papers from old runs:
                # os.remove(f'./{folder_name}/*')
        # print(pdf_info)
        all_reference_text = []
        for i,p in enumerate(stqdm(self.all_pdf_info, desc='πŸ” Searching and downloading papers')):
            pdf_title=p[0]
            pdf_category=p[3]
            pdf_url=p[1]
            if pdf_category in ['medRxiv', 'bioRxiv']:
                pdf_url += '.full.pdf'
            pdf_file_name=p[0].replace(':','').replace('/','').replace('.','')
            folder_name=p[4]
            pdf_citation=p[5]
            r = requests.get(pdf_url, allow_redirects=True)
            if  i == 0:
                if not os.path.exists(f'{folder_name}'):
                    os.makedirs(f"{folder_name}")
                else:
                    shutil.rmtree(f'{folder_name}') 
                    os.makedirs(f"{folder_name}")
            with open(f'{folder_name}/{pdf_file_name}.pdf', 'wb') as f:
                f.write(r.content)
            if i == 0:
                st.markdown("###### Papers found:")
            st.markdown(f"{i+1}. {pdf_citation}")
            time.sleep(0.15)
            all_reference_text.append(f"{i+1}. {pdf_citation}\n")
        if 'all_reference_text' not in st.session_state:
            st.session_state.key = 'all_reference_text'
        st.session_state['all_reference_text'] = ' '.join(all_reference_text)


                        

        

        

def call_arXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='docs'):
    '''
      Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
      <entry>\n    
      <id>http://arxiv.org/abs/2008.04584v2</id>\n    
      <updated>2021-05-11T12:00:24Z</updated>\n    
      <published>2020-08-11T08:47:06Z</published>\n    
      <title>Bayesian Selective Inference: Non-informative Priors</title>\n    
      <summary>  We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n    
      <author>\n      <name>Daniel G. Rasines</name>\n    </author>\n    <author>\n      <name>G. Alastair Young</name>\n    </author>\n    
      <arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n    
      <link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n    
      <link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n    
      <arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n    
      <category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n    
      <category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n  
      </entry>\n  
    '''

    # Remove space in seach query
    search_query=search_query.strip().replace(" ", "+").replace(", ","+").replace(",","+")
    # Call arXiv API
    arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
    with urllib.request.urlopen(arXiv_url) as url:
        s = url.read()
        
    from lxml import html
    
    # Parse the xml data
    root = html.fromstring(s)
    # Fetch relevant pdf information
    pdf_entries = root.xpath("entry")

    pdf_titles   = []
    pdf_authors  = []
    pdf_urls     = []
    pdf_categories = []
    folder_names = []
    pdf_citation = []
    pdf_years = []

    for i, pdf in enumerate(pdf_entries):
      pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
      pdf_authors.append(pdf.xpath("author/name/text()"))
      pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
      pdf_categories.append(pdf.xpath("category/@term"))
      folder_names.append(folder_name)
      pdf_years.append(pdf.xpath('updated/text()')[0][:4])
      pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. arXiv [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")

      

    pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
    
    # Check number of available files
    if len(pdf_urls)<int(max_results):
        matching_pdf_num=len(pdf_urls)
        # print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
    return pdf_info, pdf_citation


def download_pdf(pdf_info):
   
    # if len(os.listdir(f'./{folder_name}') ) != 0:
            # check folder is empty to avoid using papers from old runs:
            # os.remove(f'./{folder_name}/*')
    # print(pdf_info)
    all_reference_text = []
    for i,p in enumerate(stqdm(pdf_info, desc='Searching and downloading papers')):
        pdf_title=p[0].replace(':','').replace('/','').replace('.','')
        pdf_category=p[3]
        pdf_url=p[1]
        if pdf_category in ['medRxiv', 'bioRxiv']:
            pdf_url += '.full.pdf'
        pdf_author=p[2]
        folder_name=p[4]
        pdf_citation=p[5]
        r = requests.get(pdf_url, allow_redirects=True)
        if  i == 0:
            if not os.path.exists(f'{folder_name}'):
                os.makedirs(f"{folder_name}")
            else:
                shutil.rmtree(f'{folder_name}') 
                os.makedirs(f"{folder_name}")
        with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as f:
            f.write(r.content)
        if i == 0:
            st.markdown("###### Papers found:")
        st.markdown(f"{i+1}. {pdf_citation}")
        time.sleep(0.15)
        all_reference_text.append(f"{i+1}. {pdf_citation}\n")
    if 'all_reference_text' not in st.session_state:
        st.session_state.key = 'all_reference_text'
    st.session_state['all_reference_text'] = ' '.join(all_reference_text)



def call_bioArXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='docs'):
    '''
      Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
      <li class="first last odd search-result result-jcode-medrxiv search-result-highwire-citation">
      <div class="highwire-article-citation highwire-citation-type-highwire-article node" data-apath="/medrxiv/early/2021/02/18/2021.02.12.21251663.atom" data-pisa="medrxiv;2021.02.12.21251663v1" data-pisa-master="medrxiv;2021.02.12.21251663" id="node-medrxivearly202102182021021221251663atom1512875027"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix">
      <span class="highwire-cite-title">
      <a class="highwire-cite-linked-title" data-hide-link-title="0" data-icon-position="" href="http://medrxiv.org/content/early/2021/02/18/2021.02.12.21251663">
      <span class="highwire-cite-title">ClinGen Variant Curation Interface: A Variant Classification Platform for the Application of Evidence Criteria from ACMG/AMP Guidelines</span></a> </span>
      <div class="highwire-cite-authors"><span class="highwire-citation-authors">
      <span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Christine G.</span> <span class="nlm-surname">Preston</span></span>,
      <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Matt W.</span> <span class="nlm-surname">Wright</span></span>, 
      <span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Rao</span> <span class="nlm-surname">Madhavrao</span></span>, 
      <div class="highwire-cite-metadata"><span class="highwire-cite-metadata-journal highwire-cite-metadata">medRxiv </span>
      <span class="highwire-cite-metadata-pages highwire-cite-metadata">2021.02.12.21251663; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata">
      <span class="doi_label">doi:</span> https://doi.org/10.1101/2021.02.12.21251663 </span></div>
      <div class="highwire-cite-extras"><div class="hw-make-citation" data-encoded-apath=";medrxiv;early;2021;02;18;2021.02.12.21251663.atom" data-seqnum="0" id="hw-make-citation-0">
      <a class="link-save-citation-save use-ajax hw-link-save-unsave-catation link-icon" href="/highwire-save-citation/saveapath/%3Bmedrxiv%3Bearly%3B2021%3B02%3B18%3B2021.02.12.21251663.atom/nojs/0" id="link-save-citation-toggle-0" title="Save">
      <span class="icon-plus"></span> <span class="title">Add to Selected Citations</span></a></div></div>
      </div>
      </div></li> 
      </entry>\n  
    '''
    
    # Remove space in seach query
    search_query=search_query.strip().replace(", ", "+").replace(" ", "+").replace(",", "+").split('+')
    subject_str = ('%20').join(search_query[0].split())
    for subject in search_query[1:]:
      subject_str = subject_str + '%252B' + ('%20').join(subject.split())
    
    # print(subject_str)
    # Call arXiv API
    # bio_arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
    # "https://api.biorxiv.org"
    current_dateTime = datetime.now()
    today = str(current_dateTime)[:10]
    journal = 'biorxiv'
    # journals_str = '%20jcode%3Amedrxiv%7C%7Cbiorxiv'
    
    bio_arXiv_url = f'https://www.biorxiv.org/search/'
    # kwd_str = 'abstract_title%3A' + ('%252C%2B').join([search_query[0]] + [('%2B').join(keyword.split()) for keyword in search_query[1:]])
    # print(kwd_str)
    # kwd_str = kwd_str + '%20abstract_title_flags%3Amatch-' + 'all'
    # bio_arXiv_url += '%20' + kwd_str

    launch_dates = {"biorxiv": "2013-01-01", "medrxiv": "2019-06-01"}
   
    both = False
    bio_only = True
    med_only = False
    if bio_only:
      print('https://www.biorxiv.org/search/serverless%252Bcomputing%252Bbioinformatics%20jcode%3Abiorxiv%20limit_from%3A2021-06-13%20limit_to%3A2023-02-17%20numresults%3A25%20sort%3Arelevance-rank%20format_result%3Astandard\n bio_only')
      journal = 'biorxiv'
      journals_str = f'%20jcode%3A{journal}'
    if both:
      # print('https://www.biorxiv.org/search/serverless%252Bcomputing%252Bbioinformatics%20jcode%3Amedrxiv%7C%7Cbiorxiv%20limit_from%3A2022-11-06%20limit_to%3A2023-02-17%20numresults%3A10%20sort%3Arelevance-rank%20format_result%3Astandard\n both')
      journal = 'biorxiv'
      journals_str = f'%20jcode%3A{journal}%7C%7Cmedrxiv'
    if med_only:
      # print('https://www.biorxiv.org/search/serverless%252Bcomputing%252Bbioinformatics%20jcode%3Amedrxiv%20limit_from%3A2021-06-13%20limit_to%3A2023-02-17%20numresults%3A10%20sort%3Arelevance-rank%20format_result%3Astandard\n med_only')
      journal = 'medrxiv'
      journals_str = f'%20jcode%3A{journal}'
    start_day = launch_dates[journal]
    bio_arXiv_url += subject_str + journals_str + f'%20limit_from%3A2{start_day}%20limit_to%3A{today}%20numresults%3A{max_results}%20sort%3Arelevance-rank%20format_result%3Astandard'

    # print(bio_arXiv_url)
    url_response = requests.post(bio_arXiv_url)
    html = bs(url_response.text, features='html.parser')
    pdf_entries = html.find_all(attrs={'class': 'search-result'})
    # print(articles)
   
    # with urllib.request.urlopen(bio_arXiv_url) as url:
    #     s = url.read()
    # # Parse the xml data
    # root = html.fromstring(s)
    # # Fetch relevant pdf information
    # pdf_entries = root.xpath("entry")
    # print(pdf_entries)
    pdf_titles   = []
    pdf_authors  = []
    pdf_urls     = []
    pdf_categories = []
    folder_names = []
    pdf_citation = []
    pdf_years = []

    for i, pdf in enumerate(pdf_entries):
      # print(pdf.xpath('updated/text()')[0][:4])
      # xpath return a list with every ocurrence of the html path. Since we're getting each entry individually, we'll take the first element to avoid an unecessary list
      # print(pdf)
      # [article.find('span', attrs={'class': 'highwire-cite-title'}).text.strip() if article.find('span', attrs={'class': 'highwire-cite-title'}) is not None else None for article in articles]
      pdf_titles.append(pdf.find('span', attrs={'class': 'highwire-cite-title'}).text.strip())
      # print(pdf.find('span', attrs={'class': 'highwire-citation-authors'}).text.strip())
      pdf_authors.append(pdf.find('span', attrs={'class': 'highwire-citation-authors'}).text.strip().split(', '))
      # print(pdf_authors)
      
      # print(f'http://www.{journal}.org') 
      pdf_url = pdf.find('a', href=True)['href']
      if pdf_url[:4] != 'http':
        pdf_url = f'http://www.biorxiv.org'+ pdf_url
      pdf_urls.append(pdf_url)
      pdf_categories.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-journal highwire-cite-metadata'}).text.strip())
      # print(pdf_categories)
      folder_names.append(folder_name)
      pdf_years.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-pages highwire-cite-metadata'}).text.strip()[:4])
      
      pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. {pdf_categories[i]} ({pdf_years[i]}), (available at {pdf_urls[i]}).")
      # print(pdf_citation)

      # break

      

    pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
    
    # Check number of available files
    print('Requesting {max_results} files'.format(max_results=max_results))
    if len(pdf_urls)<int(max_results):
        matching_pdf_num=len(pdf_urls)
        print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
    return pdf_info

import urllib.request as urllib2

def download_bio_pdf(pdf_info):
  for p in tqdm(pdf_info):
    pdf_title=p[0].replace(':','').replace('/','-').replace('.','')
    pdf_url=p[1] + '.full.pdf'
    # print(pdf_url)
    pdf_author=p[2]
    pdf_category=p[3]
    print(pdf_category)
    folder_name=p[4]
    pdf_citation=p[5]
    r = requests.get(pdf_url, allow_redirects=True)
    # print(r)
    print(pdf_url)
    # r = requests.get(pdf_url, stream=True)
    if not os.path.exists(folder_name):
      os.makedirs(f"{folder_name}")
    with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as f:
      f.write(r.content)