Spaces:
Running
Running
import streamlit as st #Web App | |
import os | |
from PIL import Image | |
from utils import * | |
import asyncio | |
import pickle | |
docs = None | |
api_key = ' ' | |
st.set_page_config(layout="wide") | |
image = Image.open('arxiv_decode.png') | |
st.image(image, width=1000) | |
#title | |
st.title("Answering questions from scientific papers") | |
st.markdown("##### This tool will allow you to ask questions and get answers based on scientific papers. It uses OpenAI's GPT models, and you must have your own API key. Each query is about 10k tokens, which costs about only $0.20 on your own API key, charged by OpenAI.") | |
st.markdown("##### Current version searches on [ArXiv](https://arxiv.org) papers only. 🚧Under development🚧") | |
st.markdown("Used libraries:\n * [PaperQA](https://github.com/whitead/paper-qa) \n* [langchain](https://github.com/hwchase17/langchain)") | |
api_key_url = 'https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key' | |
api_key = st.text_input('OpenAI API Key', | |
placeholder='sk-...', | |
help=f"['What is that?']({api_key_url})", | |
type="password", | |
value = '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') | |
os.environ["OPENAI_API_KEY"] = f"{api_key}" # | |
if len(api_key) != 51: | |
st.warning('Please enter a valid OpenAI API key.', icon="⚠️") | |
max_results_current = 5 | |
max_results = max_results_current | |
def search_click_callback(search_query, max_results, XRxiv_servers=[]): | |
global pdf_info, pdf_citation | |
search_engines = XRxivQuery(search_query, max_results, XRxiv_servers=XRxiv_servers) | |
pdf_info = search_engines.call_API() | |
search_engines.download_pdf() | |
return pdf_info | |
with st.form(key='columns_in_form', clear_on_submit = False): | |
c1, c2, c3 = st.columns([5, 0.8, 4]) | |
with c1: | |
search_query = st.text_input("Input search query here:", placeholder='Keywords for most relevant search...', value='CFD Modeling' | |
)#search_query, max_results_current)) | |
with c2: | |
max_results = st.number_input("Max papers", value=max_results_current) | |
max_results_current = max_results_current | |
with c3: | |
with st.container(): | |
st.markdown('Pre-print server') | |
checks = st.columns(4) | |
with checks[0]: | |
ArXiv_check = st.checkbox('ArXiv') | |
with checks[1]: | |
ChemArXiv_check = st.checkbox('ChemArXiv') | |
with checks[2]: | |
BioArXiv_check = st.checkbox('BioArXiv') | |
with checks[3]: | |
MedrXiv_check = st.checkbox('MedrXiv') | |
searchButton = st.form_submit_button(label = 'Search') | |
if searchButton: | |
# checking which pre-print servers selected | |
XRxiv_servers = [] | |
if ArXiv_check: | |
XRxiv_servers.append('rxiv') | |
if ChemArXiv_check: | |
XRxiv_servers.append('chemrxiv') | |
if BioArXiv_check: | |
XRxiv_servers.append('biorxiv') | |
if MedrXiv_check: | |
XRxiv_servers.append('medrxiv') | |
global pdf_info | |
pdf_info = search_click_callback(search_query, max_results, XRxiv_servers=XRxiv_servers) | |
if 'pdf_info' not in st.session_state: | |
st.session_state.key = 'pdf_info' | |
st.session_state['pdf_info'] = pdf_info | |
def answer_callback(question_query, word_count): | |
import paperqa | |
global docs | |
if docs is None: | |
pdf_info = st.session_state['pdf_info'] | |
docs = paperqa.Docs() | |
pdf_paths = [f"{p[4]}/{p[0].replace(':','').replace('/','').replace('.','')}.pdf" for p in pdf_info] | |
pdf_citations = [p[5] for p in pdf_info] | |
print(list(zip(pdf_paths, pdf_citations))) | |
for d, c in zip(pdf_paths, pdf_citations): | |
docs.add(d, c) | |
docs._build_faiss_index() | |
answer = docs.query(question_query, length_prompt=f'use {word_count:d} words') | |
st.success('Voila! 😃') | |
return answer.formatted_answer | |
with st.form(key='question_form', clear_on_submit = False): | |
c1, c2 = st.columns([6, 2]) | |
with c1: | |
question_query = st.text_input("What do you wanna know from these papers?", placeholder='Input questions here...', | |
value='Write about CFD modeling') | |
# search_query = st.text_input("Input search query here:", placeholder='Keywords for most relevant search...', value='CFD Modeling' | |
# )#search_query, max_results_current)) | |
with c2: | |
word_count = st.slider("Suggested number of words in your answer?", 30, 300, 100) | |
submitButton = st.form_submit_button('Submit') | |
if submitButton: | |
with st.expander("Found papers:", expanded=True): | |
st.write(f"{st.session_state['all_reference_text']}") | |
with st.spinner('⏳ Please wait...'): | |
start = time.time() | |
final_answer = answer_callback(question_query, word_count) | |
length_answer = len(final_answer) | |
st.text_area("Answer:", final_answer, height=max(length_answer//4, 100)) | |
end = time.time() | |
clock_time = end - start | |
with st.empty(): | |
st.write(f"✔️ Task completed in {clock_time:.2f} seconds.") | |