decode-elm / app.py
mehradans92's picture
Update app.py
76d5fd8
raw
history blame
10.5 kB
import streamlit as st #Web App
import urllib
from lxml import html
import requests
import re
import os
from stqdm import stqdm
import time
import shutil
import pickle
docs = None
api_key = ' '
#title
st.title("Encode knowledge from papers with cited references")
st.markdown("##### Current version searches on ArXiv only.")
api_key_url = 'https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key'
api_key = st.text_input('OpenAI API Key',
placeholder='sk-...',
help=f"['What is that?']({api_key_url})",
type="password")
os.environ["OPENAI_API_KEY"] = f"{api_key}" #
if len(api_key) != 51:
st.warning('Please enter a valid OpenAI API key.', icon="⚠️")
def call_arXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='arxiv-dl'):
'''
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
<entry>\n
<id>http://arxiv.org/abs/2008.04584v2</id>\n
<updated>2021-05-11T12:00:24Z</updated>\n
<published>2020-08-11T08:47:06Z</published>\n
<title>Bayesian Selective Inference: Non-informative Priors</title>\n
<summary> We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n
<author>\n <name>Daniel G. Rasines</name>\n </author>\n <author>\n <name>G. Alastair Young</name>\n </author>\n
<arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n
<link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n
<link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n
<arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
<category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
<category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n
</entry>\n
'''
# Remove space in seach query
search_query=search_query.strip().replace(" ", "+")
# Call arXiv API
arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
with urllib.request.urlopen(arXiv_url) as url:
s = url.read()
# Parse the xml data
root = html.fromstring(s)
# Fetch relevant pdf information
pdf_entries = root.xpath("entry")
pdf_titles = []
pdf_authors = []
pdf_urls = []
pdf_categories = []
folder_names = []
pdf_citation = []
pdf_years = []
for i, pdf in enumerate(pdf_entries):
# print(pdf.xpath('updated/text()')[0][:4])
# xpath return a list with every ocurrence of the html path. Since we're getting each entry individually, we'll take the first element to avoid an unecessary list
pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
pdf_authors.append(pdf.xpath("author/name/text()"))
pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
pdf_categories.append(pdf.xpath("category/@term"))
folder_names.append(folder_name)
pdf_years.append(pdf.xpath('updated/text()')[0][:4])
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. arXiv [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
# Check number of available files
# print('Requesting {max_results} files'.format(max_results=max_results))
if len(pdf_urls)<int(max_results):
matching_pdf_num=len(pdf_urls)
# print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
return pdf_info, pdf_citation
def download_pdf(pdf_info):
# if len(os.listdir(f'./{folder_name}') ) != 0:
# check folder is empty to avoid using papers from old runs:
# os.remove(f'./{folder_name}/*')
all_reference_text = []
for i,p in enumerate(stqdm(pdf_info, desc='Searching and downloading papers')):
pdf_title=p[0]
pdf_url=p[1]
pdf_author=p[2]
pdf_category=p[3]
folder_name=p[4]
pdf_citation=p[5]
r = requests.get(pdf_url, allow_redirects=True)
if i == 0:
if not os.path.exists(f'{folder_name}'):
os.makedirs(f"{folder_name}")
else:
shutil.rmtree(f'{folder_name}')
os.makedirs(f"{folder_name}")
with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as currP:
currP.write(r.content)
if i == 0:
st.markdown("###### Papers found:")
st.markdown(f"{i+1}. {pdf_citation}")
time.sleep(0.15)
all_reference_text.append(f"{i+1}. {pdf_citation}\n")
if 'all_reference_text' not in st.session_state:
st.session_state.key = 'all_reference_text'
st.session_state['all_reference_text'] = ' '.join(all_reference_text)
# print(all_reference_text)
max_results_current = 5
max_results = max_results_current
# pdf_info = ''
# pdf_citation = ''
def search_click_callback(search_query, max_results):
global pdf_info, pdf_citation
pdf_info, pdf_citation = call_arXiv_API(f'{search_query}', max_results=max_results)
download_pdf(pdf_info)
return pdf_info
with st.form(key='columns_in_form', clear_on_submit = False):
c1, c2 = st.columns([8,1])
with c1:
search_query = st.text_input("Input search query here:", placeholder='Keywords for most relevant search...', value=''
)#search_query, max_results_current))
with c2:
max_results = st.text_input("Max papers", value=max_results_current)
max_results_current = max_results_current
searchButton = st.form_submit_button(label = 'Search')
# search_click(search_query, max_results_default)
if searchButton:
global pdf_info
pdf_info = search_click_callback(search_query, max_results)
if 'pdf_info' not in st.session_state:
st.session_state.key = 'pdf_info'
st.session_state['pdf_info'] = pdf_info
# print(f'This is PDF info from search:{pdf_info}')
# def tokenize_callback():
# return docs
# tokenization_form = st.form(key='tokenization-form')
# tokenization_form.markdown(f"Happy with your paper search results? ")
# toknizeButton = tokenization_form.form_submit_button(label = "Yes! Let's tokenize.", on_click=tokenize_callback())
# tokenization_form.markdown("If not, change keywords and search again. [This step costs!](https://openai.com/api/pricing/)")
# submitButton = form.form_submit_button('Submit')
# with st.form(key='tokenization_form', clear_on_submit = False):
# st.markdown(f"Happy with your paper search results? If not, change keywords and search again. [This step costs!](https://openai.com/api/pricing/)")
# # st.text_input("Input search query here:", placeholder='Keywords for most relevant search...'
# # )#search_query, max_results_current))
# toknizeButton = st.form_submit_button(label = "Yes! Let's tokenize.")
# if toknizeButton:
# tokenize_callback()
# tokenize_callback()
def answer_callback(question_query):
import paperqa
global docs
# global pdf_info
progress_text = "Please wait..."
# my_bar = st.progress(0, text = progress_text)
st.info('Please wait...', icon="🔥")
if docs is None:
# my_bar.progress(0.2, "Please wait...")
pdf_info = st.session_state['pdf_info']
# print('buliding docs')
docs = paperqa.Docs()
pdf_paths = [f"{p[4]}/{p[0]}.pdf" for p in pdf_info]
pdf_citations = [p[5] for p in pdf_info]
print(list(zip(pdf_paths, pdf_citations)))
for d, c in zip(pdf_paths, pdf_citations):
# print(d,c)
docs.add(d, c)
# docs._build_faiss_index()
answer = docs.query(question_query)
# print(answer.formatted_answer)
# my_bar.progress(1.0, "Done!")
st.success('Done!')
return answer.formatted_answer
form = st.form(key='question_form')
question_query = form.text_input("What do you wanna know from these papers?", placeholder='Input questions here...',
value='')
submitButton = form.form_submit_button('Submit')
if submitButton:
with st.expander("Found papers:", expanded=True):
st.write(f"{st.session_state['all_reference_text']}")
st.text_area("Answer:", answer_callback(question_query), height=600)
# with st.form(key='question_form', clear_on_submit = False):
# question_query = st.text_input("What do you wanna know from these papers?", placeholder='Input questions here')
# # st.text_input("Input search query here:", placeholder='Keywords for most relevant search...'
# # )#search_query, max_results_current))
# submitButton = form.form_submit_button(label = "Submit", on_click=answer_callback(question_query))
# Simulation-based inference bayesian model selection
# test = "<ul> \
# <li>List item here</li> \
# <li>List item here</li> \
# <li>List item here</li> \
# <li>List item here</li> \
# </ul>"
# test = "'''It was the best of times, it was the worst of times, it was \
# the age of wisdom, it was the age of foolishness, it was \
# the epoch of belief, it was the epoch of incredulity, it \
# was the season of Light, it was the season of Darkness, it\
# was the spring of hope, it was the winter of despair, (...)'''"
# citation_text = st.text_area('Papers found:',test, height=300) # f'{pdf_citation}'
# for i, cite in enumerate(pdf_citation):
# st.markdown(f'{i+1}. {cite}')
# time.sleep(1)
# def make_clickable('link',text):
# return f'<a target="_blank" href="{link}">{text}'