|
import PyPDF2 |
|
from langchain_community.embeddings import OllamaEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.chat_models import ChatOllama |
|
from langchain.memory import ChatMessageHistory, ConversationBufferMemory |
|
import chainlit as cl |
|
|
|
|
|
|
|
@cl.on_chat_start |
|
async def on_chat_start(): |
|
files = None |
|
|
|
|
|
while files is None: |
|
files = await cl.AskFileMessage( |
|
content="Please upload a pdf file to begin!", |
|
accept=["application/pdf"], |
|
max_size_mb=100, |
|
timeout=180, |
|
).send() |
|
|
|
file = files[0] |
|
print(file) |
|
|
|
|
|
elements = [ |
|
cl.Image(name="image", display="inline", path="pic.jpg") |
|
] |
|
|
|
msg = cl.Message(content=f"Processing `{file.name}`...",elements=elements) |
|
await msg.send() |
|
|
|
|
|
pdf = PyPDF2.PdfReader(file.path) |
|
pdf_text = "" |
|
for page in pdf.pages: |
|
pdf_text += page.extract_text() |
|
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=50) |
|
texts = text_splitter.split_text(pdf_text) |
|
|
|
|
|
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))] |
|
|
|
|
|
embeddings = OllamaEmbeddings(model="nomic-embed-text") |
|
docsearch = await cl.make_async(Chroma.from_texts)( |
|
texts, embeddings, metadatas=metadatas |
|
) |
|
|
|
|
|
message_history = ChatMessageHistory() |
|
|
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key="answer", |
|
chat_memory=message_history, |
|
return_messages=True, |
|
) |
|
|
|
|
|
chain = ConversationalRetrievalChain.from_llm( |
|
ChatOllama(model="gemma:7b"), |
|
chain_type="stuff", |
|
retriever=docsearch.as_retriever(), |
|
memory=memory, |
|
return_source_documents=True, |
|
) |
|
|
|
|
|
msg.content = f"Processing `{file.name}` done. You can now ask questions!" |
|
await msg.update() |
|
|
|
cl.user_session.set("chain", chain) |
|
|
|
|
|
@cl.on_message |
|
async def main(message: cl.Message): |
|
|
|
chain = cl.user_session.get("chain") |
|
|
|
cb = cl.AsyncLangchainCallbackHandler() |
|
|
|
|
|
res = await chain.ainvoke(message.content, callbacks=[cb]) |
|
answer = res["answer"] |
|
source_documents = res["source_documents"] |
|
|
|
text_elements = [] |
|
|
|
|
|
if source_documents: |
|
for source_idx, source_doc in enumerate(source_documents): |
|
source_name = f"source_{source_idx}" |
|
|
|
text_elements.append( |
|
cl.Text(content=source_doc.page_content, name=source_name) |
|
) |
|
source_names = [text_el.name for text_el in text_elements] |
|
|
|
|
|
if source_names: |
|
answer += f"\nSources: {', '.join(source_names)}" |
|
else: |
|
answer += "\nNo sources found" |
|
|
|
await cl.Message(content=answer, elements=text_elements).send() |