Upload 4 files
Browse files- app.py +113 -0
- mental_health_Document.pdf +0 -0
- pic.jpg +0 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
from langchain_community.embeddings import OllamaEmbeddings
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.vectorstores import Chroma
|
5 |
+
from langchain.chains import ConversationalRetrievalChain
|
6 |
+
from langchain_community.chat_models import ChatOllama
|
7 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
8 |
+
import chainlit as cl
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
@cl.on_chat_start
|
13 |
+
async def on_chat_start():
|
14 |
+
files = None #Initialize variable to store uploaded files
|
15 |
+
|
16 |
+
# Wait for the user to upload a file
|
17 |
+
while files is None:
|
18 |
+
files = await cl.AskFileMessage(
|
19 |
+
content="Please upload a pdf file to begin!",
|
20 |
+
accept=["application/pdf"],
|
21 |
+
max_size_mb=100,# Optionally limit the file size
|
22 |
+
timeout=180, # Set a timeout for user response,
|
23 |
+
).send()
|
24 |
+
|
25 |
+
file = files[0] # Get the first uploaded file
|
26 |
+
print(file) # Print the file object for debugging
|
27 |
+
|
28 |
+
# Sending an image with the local file path
|
29 |
+
elements = [
|
30 |
+
cl.Image(name="image", display="inline", path="pic.jpg")
|
31 |
+
]
|
32 |
+
# Inform the user that processing has started
|
33 |
+
msg = cl.Message(content=f"Processing `{file.name}`...",elements=elements)
|
34 |
+
await msg.send()
|
35 |
+
|
36 |
+
# Read the PDF file
|
37 |
+
pdf = PyPDF2.PdfReader(file.path)
|
38 |
+
pdf_text = ""
|
39 |
+
for page in pdf.pages:
|
40 |
+
pdf_text += page.extract_text()
|
41 |
+
|
42 |
+
|
43 |
+
# Split the text into chunks
|
44 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=50)
|
45 |
+
texts = text_splitter.split_text(pdf_text)
|
46 |
+
|
47 |
+
# Create a metadata for each chunk
|
48 |
+
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
49 |
+
|
50 |
+
# Create a Chroma vector store
|
51 |
+
embeddings = OllamaEmbeddings(model="nomic-embed-text")
|
52 |
+
docsearch = await cl.make_async(Chroma.from_texts)(
|
53 |
+
texts, embeddings, metadatas=metadatas
|
54 |
+
)
|
55 |
+
|
56 |
+
# Initialize message history for conversation
|
57 |
+
message_history = ChatMessageHistory()
|
58 |
+
|
59 |
+
# Memory for conversational context
|
60 |
+
memory = ConversationBufferMemory(
|
61 |
+
memory_key="chat_history",
|
62 |
+
output_key="answer",
|
63 |
+
chat_memory=message_history,
|
64 |
+
return_messages=True,
|
65 |
+
)
|
66 |
+
|
67 |
+
# Create a chain that uses the Chroma vector store
|
68 |
+
chain = ConversationalRetrievalChain.from_llm(
|
69 |
+
ChatOllama(model="gemma:7b"),
|
70 |
+
chain_type="stuff",
|
71 |
+
retriever=docsearch.as_retriever(),
|
72 |
+
memory=memory,
|
73 |
+
return_source_documents=True,
|
74 |
+
)
|
75 |
+
|
76 |
+
# Let the user know that the system is ready
|
77 |
+
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
78 |
+
await msg.update()
|
79 |
+
#store the chain in user session
|
80 |
+
cl.user_session.set("chain", chain)
|
81 |
+
|
82 |
+
|
83 |
+
@cl.on_message
|
84 |
+
async def main(message: cl.Message):
|
85 |
+
# Retrieve the chain from user session
|
86 |
+
chain = cl.user_session.get("chain")
|
87 |
+
#call backs happens asynchronously/parallel
|
88 |
+
cb = cl.AsyncLangchainCallbackHandler()
|
89 |
+
|
90 |
+
# call the chain with user's message content
|
91 |
+
res = await chain.ainvoke(message.content, callbacks=[cb])
|
92 |
+
answer = res["answer"]
|
93 |
+
source_documents = res["source_documents"]
|
94 |
+
|
95 |
+
text_elements = [] # Initialize list to store text elements
|
96 |
+
|
97 |
+
# Process source documents if available
|
98 |
+
if source_documents:
|
99 |
+
for source_idx, source_doc in enumerate(source_documents):
|
100 |
+
source_name = f"source_{source_idx}"
|
101 |
+
# Create the text element referenced in the message
|
102 |
+
text_elements.append(
|
103 |
+
cl.Text(content=source_doc.page_content, name=source_name)
|
104 |
+
)
|
105 |
+
source_names = [text_el.name for text_el in text_elements]
|
106 |
+
|
107 |
+
# Add source references to the answer
|
108 |
+
if source_names:
|
109 |
+
answer += f"\nSources: {', '.join(source_names)}"
|
110 |
+
else:
|
111 |
+
answer += "\nNo sources found"
|
112 |
+
#return results
|
113 |
+
await cl.Message(content=answer, elements=text_elements).send()
|
mental_health_Document.pdf
ADDED
Binary file (128 kB). View file
|
|
pic.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chainlit==1.0.200
|
2 |
+
langchain
|
3 |
+
langchain_community
|
4 |
+
PyPDF2
|
5 |
+
chromadb
|