Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
model_path = "pokemons-model_transferlearning.keras"
|
7 |
+
model = tf.keras.models.load_model(model_path)
|
8 |
+
|
9 |
+
|
10 |
+
def predict_pokemons(image):
|
11 |
+
# Preprocess image
|
12 |
+
print(type(image))
|
13 |
+
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
|
14 |
+
image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale
|
15 |
+
image = np.array(image)
|
16 |
+
image = np.expand_dims(image, axis=0) # same as image[None, ...]
|
17 |
+
|
18 |
+
prediction = model.predict(image)
|
19 |
+
|
20 |
+
|
21 |
+
# Convert the probabilities to rounded values
|
22 |
+
prediction = np.round(prediction, 2)
|
23 |
+
|
24 |
+
# Separate the probabilities for each class
|
25 |
+
p_bulbasaur = prediction[0][0]
|
26 |
+
p_dratini = prediction[0][1]
|
27 |
+
p_gengar = prediction[0][2]
|
28 |
+
|
29 |
+
return {'Bulbasaur': p_bulbasaur, 'Dratini': p_dratini, 'Gengar': p_gengar}
|
30 |
+
|
31 |
+
|
32 |
+
input_image = gr.Image()
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=predict_pokemons,
|
35 |
+
inputs=input_image,
|
36 |
+
outputs=gr.Label(),
|
37 |
+
examples=["images/bulbasaur1.png", "images/bulbasaur2.png", "images/dratini1.png", "images/dratini2.png", "images/dratini3.png", "images/gengar1.png", "images/gengar2.png", "images/gengar3.png"],
|
38 |
+
description="TEST.")
|
39 |
+
|
40 |
+
iface.launch()
|