File size: 847 Bytes
c5e708d 547e4f0 c5e708d 547e4f0 c5e708d 547e4f0 c5e708d 547e4f0 c5e708d 547e4f0 1aa9781 32bb55d c5e708d 547e4f0 c5e708d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from PIL import Image
import requests
import gradio as gr
from io import BytesIO
from transformers import BlipProcessor, BlipForConditionalGeneration
model_id = "Salesforce/blip-image-captioning-base"
model = BlipForConditionalGeneration.from_pretrained(model_id)
processor = BlipProcessor.from_pretrained(model_id)
def decode_base64_image(image_string):
base64_image = base64.b64decode(image_string)
buffer = BytesIO(base64_image)
return Image.open(buffer)
def launch(input_b64):
image = decode_base64_image(input_b64)
#inputsData = data.pop("inputs", data)
# decode base64 image to PIL
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
return processor.decode(out[0], skip_special_tokens=True)
iface = gr.Interface(launch, inputs=gr.inputs.Image(), outputs="text")
iface.launch()
|