File size: 6,865 Bytes
21ac434
7bf8be4
 
 
 
 
 
 
 
 
 
 
20f957a
93b4f33
 
 
 
 
 
20f957a
68a2713
 
 
 
 
 
 
93b4f33
 
 
7bf8be4
68a2713
 
 
 
 
 
 
 
 
 
 
20f957a
68a2713
 
 
 
7bf8be4
68a2713
 
7bf8be4
 
 
 
20f957a
 
 
 
7bf8be4
 
 
20f957a
 
 
 
 
 
 
 
7bf8be4
20f957a
 
 
 
7bf8be4
 
20f957a
 
 
 
 
 
 
7bf8be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20f957a
7bf8be4
20f957a
 
7bf8be4
 
20f957a
7bf8be4
20f957a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bf8be4
 
20f957a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
import seaborn as sns
import plotly.express as px
import plotly.io as pio
import plotly.graph_objects as go

# Set page configuration
st.set_page_config(layout="wide")

# Function to load and clean data
def load_and_clean_data():
    df1 = pd.read_csv("data/reviewed_social_media_english.csv")
    df2 = pd.read_csv("data/reviewed_news_english.csv")
    df3 = pd.read_csv("data/tamil_social_media.csv")  
    df4 = pd.read_csv("data/tamil_news.csv")       

    # Concatenate dataframes and clean data
    df_combined = pd.concat([df1, df2, df3, df4])
    df_combined['Domain'] = df_combined['Domain'].replace("MUSLIM", "Muslim")
    df_combined = df_combined[df_combined['Domain'] != 'Not relevant']
    df_combined = df_combined[df_combined['Domain'] != 'None']
    df_combined = df_combined[df_combined['Discrimination'] != 'None']
    df_combined = df_combined[df_combined['Sentiment'] != 'None']

    return df_combined

df = load_and_clean_data()

# Define Sidebar Filters
domain_options = df['Domain'].unique()
channel_options = df['Channel'].unique()
sentiment_options = df['Sentiment'].unique()
discrimination_options = df['Discrimination'].unique()

domain_filter = st.sidebar.multiselect('Select Domain', options=domain_options, default=domain_options)
channel_filter = st.sidebar.multiselect('Select Channel', options=channel_options, default=channel_options)
sentiment_filter = st.sidebar.multiselect('Select Sentiment', options=sentiment_options, default=sentiment_options)
discrimination_filter = st.sidebar.multiselect('Select Discrimination', options=discrimination_options, default=discrimination_options)

# Apply filters
df_filtered = df[(df['Domain'].isin(domain_filter)) & 
                 (df['Channel'].isin(channel_filter)) & 
                 (df['Sentiment'].isin(sentiment_filter)) & 
                 (df['Discrimination'].isin(discrimination_filter))]

# Define a color palette for consistent visualization styles
color_palette = px.colors.sequential.Viridis

# Page navigation
page = st.sidebar.selectbox("Choose a page", ["Overview", "Sentiment Analysis", "Discrimination Analysis", "Channel Analysis"])

# Visualisation for Domain Distribution
def create_pie_chart(df, column, title):
    fig = px.pie(df, names=column, title=title, hole=0.35)
    fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
    fig.update_traces(marker=dict(colors=color_palette))
    return fig

# Visualization for Distribution of Gender versus Ethnicity
def create_gender_ethnicity_distribution_chart(df):
    df['GenderOrEthnicity'] = df['Domain'].apply(lambda x: "Gender: Women & LGBTQIA+" if x in ["Women", "LGBTQIA+"] else "Ethnicity")
    fig = px.pie(df, names='GenderOrEthnicity', title='Distribution of Gender versus Ethnicity', hole=0.35)
    fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
    return fig

# Visualization for Sentiment Distribution Across Domains
def create_sentiment_distribution_chart(df):
    df['Discrimination'] = df['Discrimination'].replace({"Non Discriminative": "Non-Discriminative"})  # Assuming typo in the original script
    domain_counts = df.groupby(['Domain', 'Sentiment']).size().reset_index(name='counts')
    fig = px.bar(domain_counts, x='Domain', y='counts', color='Sentiment', title="Sentiment Distribution Across Domains", barmode='stack')
    fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Domain", yaxis_title="Counts", font=dict(size=12))
    return fig

# Visualization for Correlation between Sentiment and Discrimination
def create_sentiment_discrimination_grouped_chart(df):
    crosstab_df = pd.crosstab(df['Sentiment'], df['Discrimination']).reset_index()
    melted_df = pd.melt(crosstab_df, id_vars='Sentiment', value_vars=['Yes', 'No'], var_name='Discrimination', value_name='Count')
    fig = px.bar(melted_df, x='Sentiment', y='Count', color='Discrimination', barmode='group', title="Sentiment vs. Discrimination")
    fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=12))
    return fig

# Function for Channel-wise Sentiment Over Time Chart
def create_channel_sentiment_over_time_chart(df):
    df['Date'] = pd.to_datetime(df['Date'])
    timeline = df.groupby([df['Date'].dt.to_period('M'), 'Channel', 'Sentiment']).size().unstack(fill_value=0)
    fig = px.line(timeline, x=timeline.index.levels[1].to_timestamp(), y=['Positive', 'Negative', 'Neutral'], color='Channel')
    fig.update_layout(title='Channel-wise Sentiment Over Time', margin=dict(l=20, r=20, t=40, b=20))
    return fig

# Function for Channel-wise Distribution of Discriminative Content Chart
def create_channel_discrimination_chart(df):
    channel_discrimination = df.groupby(['Channel', 'Discrimination']).size().unstack(fill_value=0)
    fig = px.bar(channel_discrimination, x=channel_discrimination.index, y=['Discriminative', 'Non-Discriminative'], barmode='group')
    fig.update_layout(title='Channel-wise Distribution of Discriminative Content', margin=dict(l=20, r=20, t=40, b=20))
    return fig

def render_dashboard(page, df_filtered):
    if page == "Overview":
        st.title("Overview Dashboard")
        # Create 2x2 grid for overview visualizations
        col1, col2 = st.beta_columns(2)
        with col1:
            st.plotly_chart(create_pie_chart(df_filtered, 'Domain', 'Distribution of Domains'))
        with col2:
            st.plotly_chart(create_gender_ethnicity_distribution_chart(df_filtered))

        col3, col4 = st.beta_columns(2)
        with col3:
            st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
        with col4:
            st.plotly_chart(create_sentiment_discrimination_grouped_chart(df_filtered))

    elif page == "Sentiment Analysis":
        st.title("Sentiment Analysis Dashboard")
        # Implementation for the "Sentiment Analysis" page...
        # Example: st.plotly_chart(create_some_other_chart(df_filtered))

    elif page == "Discrimination Analysis":
        st.title("Discrimination Analysis Dashboard")
        # Implementation for the "Discrimination Analysis" page...
        # Example: st.plotly_chart(create_another_chart(df_filtered))

    elif page == "Channel Analysis":
        st.title("Channel Analysis Dashboard")
        # Create visualizations for the channel analysis page
        col1, col2 = st.columns(2)
        with col1:
            st.plotly_chart(create_channel_sentiment_over_time_chart(df_filtered))
        with col2:
            st.plotly_chart(create_channel_discrimination_chart(df_filtered))

# Render the dashboard with filtered data
render_dashboard(page, df_filtered)