File size: 11,836 Bytes
21ac434 7bf8be4 20f957a 93b4f33 20f957a 68a2713 72c555f 21b510b 72c555f 21b510b 72c555f 68a2713 93b4f33 7bf8be4 b7e92a0 928cd59 b7e92a0 21b510b 68a2713 20f957a 68a2713 7bf8be4 68a2713 7bf8be4 20f957a 928cd59 7bf8be4 20f957a 928cd59 20f957a 7bf8be4 20f957a 928cd59 7bf8be4 20f957a 848f63d 928cd59 848f63d 7bf8be4 836b08d 928cd59 836b08d 928cd59 836b08d 928cd59 836b08d 928cd59 836b08d 928cd59 836b08d 7bf8be4 72c555f 928cd59 7bf8be4 928cd59 7bf8be4 21b510b 20f957a 928cd59 5ecc9ee 7bf8be4 20f957a 7bf8be4 20f957a 5ecc9ee 20f957a 848f63d 20f957a 5ecc9ee 836b08d 20f957a 5ecc9ee 836b08d 928cd59 90742aa 20f957a 5ecc9ee 836b08d 90742aa 20f957a 72c555f 20f957a 7bf8be4 848f63d 21b510b d44cfa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
import seaborn as sns
import plotly.express as px
import plotly.io as pio
import plotly.graph_objects as go
# Set page configuration
st.set_page_config(layout="wide")
# Function to load and clean data
def load_and_clean_data():
df1 = pd.read_csv("data/reviewed_social_media_english.csv")
df2 = pd.read_csv("data/reviewed_news_english.csv")
df3 = pd.read_csv("data/tamil_social_media.csv")
df4 = pd.read_csv("data/tamil_news.csv")
# Concatenate dataframes and clean data
df_combined = pd.concat([df1, df2, df3, df4])
# Replace 'nan' and 'None' with numpy NaN for removal
df_combined['Domain'] = df_combined['Domain'].replace({"MUSLIM": "Muslim", "nan": pd.NA, "None": pd.NA, "Other-Ethnic": "Other-Ethnicity"})
# Specific replacements for 'Sentiment' and 'Discrimination'
df_combined['Sentiment'] = df_combined['Sentiment'].replace({"nan": pd.NA, "None": pd.NA, "No": pd.NA})
df_combined['Discrimination'] = df_combined['Discrimination'].replace({"nan": pd.NA, "None": pd.NA, "No": pd.NA})
# Drop rows with NA values in 'Domain', 'Sentiment', and 'Discrimination'
df_combined.dropna(subset=['Domain', 'Sentiment', 'Discrimination'], inplace=True)
return df_combined
df = load_and_clean_data()
# Page navigation setup
page_names = [" GESI Overview", "Sentiment Analysis", "Discrimination Analysis", "Channel Analysis"]
page = st.sidebar.selectbox("Choose a page", page_names)
# Sidebar Filters
domain_options = df['Domain'].dropna().unique()
channel_options = df['Channel'].dropna().unique()
sentiment_options = df['Sentiment'].dropna().unique()
discrimination_options = df['Discrimination'].dropna().unique()
domain_filter = st.sidebar.multiselect('Select Domain', options=domain_options, default=domain_options)
channel_filter = st.sidebar.multiselect('Select Channel', options=channel_options, default=channel_options)
sentiment_filter = st.sidebar.multiselect('Select Sentiment', options=sentiment_options, default=sentiment_options)
discrimination_filter = st.sidebar.multiselect('Select Discrimination', options=discrimination_options, default=discrimination_options)
# Apply filters
df_filtered = df[(df['Domain'].isin(domain_filter)) &
(df['Channel'].isin(channel_filter)) &
(df['Sentiment'].isin(sentiment_filter)) &
(df['Discrimination'].isin(discrimination_filter))]
# Define a color palette for consistent visualization styles
color_palette = px.colors.sequential.Viridis
# Visualisation for Domain Distribution
def create_pie_chart(df, column, title):
fig = px.pie(df, names=column, title=title, hole=0.35)
fig.update_layout(margin=dict(l=6, r=6, t=12, b=6), legend=dict(x=0.1, y=1), font=dict(size=7)
fig.update_traces(marker=dict(colors=color_palette))
return fig
# Visualization for Distribution of Gender versus Ethnicity
def create_gender_ethnicity_distribution_chart(df):
df['GenderOrEthnicity'] = df['Domain'].apply(lambda x: "Gender: Women & LGBTQIA+" if x in ["Women", "LGBTQIA+"] else "Ethnicity")
fig = px.pie(df, names='GenderOrEthnicity', title='Distribution of Gender versus Ethnicity', hole=0.35)
fig.update_layout(margin=dict(l=6, r=6, t=12, b=6), legend=dict(x=0.1, y=1), font=dict(size=7)
return fig
# Visualization for Sentiment Distribution Across Domains
def create_sentiment_distribution_chart(df):
df['Discrimination'] = df['Discrimination'].replace({"Non Discriminative": "Non-Discriminative"}) # Assuming typo in the original script
domain_counts = df.groupby(['Domain', 'Sentiment']).size().reset_index(name='counts')
fig = px.bar(domain_counts, x='Domain', y='counts', color='Sentiment', title="Sentiment Distribution Across Domains", barmode='stack')
fig.update_layout(margin=dict(l=6, r=6, t=12, b=6), xaxis_title="Domain", yaxis_title="Counts", font=dict(size=7))
return fig
# Visualization for Correlation between Sentiment and Discrimination
def create_sentiment_discrimination_grouped_chart(df):
# Creating a crosstab of 'Sentiment' and 'Discrimination'
crosstab_df = pd.crosstab(df['Sentiment'], df['Discrimination'])
# Check if 'Yes' and 'No' are in the columns after the crosstab operation
value_vars = crosstab_df.columns.intersection(['Yes', 'No']).tolist()
# If 'No' is not in columns, it will not be included in melting
melted_df = pd.melt(crosstab_df.reset_index(), id_vars='Sentiment', value_vars=value_vars, var_name='Discrimination', value_name='Count')
# Proceeding to plot only if we have data to plot
if not melted_df.empty:
fig = px.bar(melted_df, x='Sentiment', y='Count', color='Discrimination', barmode='group', title="Sentiment vs. Discrimination")
fig.update_layout(margin=dict(l=6, r=6, t=12, b=6), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=7))
return fig
else:
return "No data to display for the selected filters."
# Function for Top Domains with Negative Sentiment Chart
def create_top_negative_sentiment_domains_chart(df):
domain_counts = df.groupby(['Domain', 'Sentiment']).size().unstack(fill_value=0)
domain_counts.sort_values(by='Negative', ascending=False, inplace=True)
domain_counts_subset = domain_counts.iloc[:3, [0]]
domain_counts_subset = domain_counts_subset.rename(columns={domain_counts_subset.columns[0]: 'Count'})
domain_counts_subset = domain_counts_subset.reset_index()
colors = ['limegreen', 'crimson', 'darkcyan']
fig = px.bar(domain_counts_subset, x='Count', y='Domain', title='Top Domains with Negative Sentiment', color='Domain',
orientation='h', color_discrete_sequence=colors)
fig.update_layout(margin=dict(l=6, r=6, t=12, b=6), xaxis_title="Negative sentiment content Count", yaxis_title="Domain", font=dict(size=7))
return fig
# Function for Key Phrases in Negative Sentiment Content Chart
def create_key_phrases_negative_sentiment_chart(df):
cv = CountVectorizer(ngram_range=(3,3), stop_words='english')
trigrams = cv.fit_transform(df['Content'][df['Sentiment'] == 'Negative'])
count_values = trigrams.toarray().sum(axis=0)
ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
ngram_freq.columns = ['frequency', 'ngram']
fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Negative Sentiment Content')
fig.update_layout(margin=dict(l=6, r=6, t=12, b=6), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=7))
return fig
# Function for Key Phrases in Positive Sentiment Content Chart
def create_key_phrases_positive_sentiment_chart(df):
cv = CountVectorizer(ngram_range=(3, 3), stop_words='english')
trigrams = cv.fit_transform(df['Content'][df['Sentiment'] == 'Positive'])
count_values = trigrams.toarray().sum(axis=0)
ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
ngram_freq.columns = ['frequency', 'ngram']
fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Positive Sentiment Content')
fig.update_layout(margin=dict(l=6, r=6, t=12, b=6), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=7))
return fig
# Function for Prevalence of Discriminatory Content Chart
def create_prevalence_discriminatory_content_chart(df):
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
fig = px.bar(domain_counts, x=domain_counts.index, y=['Discriminative', 'Non-Discriminative'], barmode='group',
title='Prevalence of Discriminatory Content')
fig.update_layout(margin=dict(l=6, r=6, t=12, b=6), xaxis_title="Domain", yaxis_title="Count", font=dict(size=7))
return fig
# Function for Top Domains with Discriminatory Content Chart
def create_top_discriminatory_domains_chart(df):
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
domain_counts.sort_values(by='Discriminative', ascending=False, inplace=True)
domain_counts_subset = domain_counts.iloc[:3]
domain_counts_subset = domain_counts_subset.rename(columns={'Discriminative': 'Count'})
fig = px.bar(domain_counts_subset, x='Count', y=domain_counts_subset.index, orientation='h',
title='Top Domains with Discriminatory Content')
fig.update_layout(margin=dict((l=6, r=6, t=12, b=6), xaxis_title="Discriminatory Content Count", yaxis_title="Domain", font=dict(size=7))
return fig
# Function for Channel-wise Sentiment Over Time Chart
def create_sentiment_distribution_by_channel_chart(df):
sentiment_by_channel = df.groupby(['Channel', 'Sentiment']).size().reset_index(name='counts')
fig = px.bar(sentiment_by_channel, x='Channel', y='counts', color='Sentiment', title="Sentiment Distribution by Channel", barmode='group')
fig.update_layout(margin=dict(l=6, r=6, t=12, b=6), xaxis_title="Channel", yaxis_title="Counts", font=dict(size=7))
return fig
# Function for Channel-wise Distribution of Discriminative Content Chart
def create_channel_discrimination_chart(df):
channel_discrimination = df.groupby(['Channel', 'Discrimination']).size().unstack(fill_value=0)
fig = px.bar(channel_discrimination, x=channel_discrimination.index, y=['Discriminative', 'Non-Discriminative'], barmode='group')
fig.update_layout(title='Channel-wise Distribution of Discriminative Content', margin=dict(l=6, r=6, t=12, b=6), font=dict(size=7))
return fig
# Function for rendering dashboard
def render_dashboard(page, df_filtered):
if page == " GESI Overview":
st.title(" GESI Overview Dashboard")
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(create_pie_chart(df_filtered, 'Domain', 'Distribution of Domains'))
with col2:
st.plotly_chart(create_gender_ethnicity_distribution_chart(df_filtered))
col3, col4 = st.columns(2)
with col3:
st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
with col4:
chart = create_sentiment_discrimination_grouped_chart(df_filtered)
if isinstance(chart, str):
st.write(chart)
else:
st.plotly_chart(chart)
elif page == "Sentiment Analysis":
st.title("Sentiment Analysis Dashboard")
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
with col2:
st.plotly_chart(create_top_negative_sentiment_domains_chart(df_filtered))
col3, col4 = st.columns(2)
with col3:
st.plotly_chart(create_key_phrases_negative_sentiment_chart(df_filtered))
with col4:
st.plotly_chart(create_key_phrases_positive_sentiment_chart(df_filtered)
elif page == "Discrimination Analysis":
st.title("Discrimination Analysis Dashboard")
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(create_prevalence_discriminatory_content_chart(df_filtered))
with col2:
st.plotly_chart(create_top_discriminatory_domains_chart(df_filtered))
elif page == "Channel Analysis":
st.title("Channel Analysis Dashboard")
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(create_sentiment_distribution_by_channel_chart(df_filtered))
with col2:
st.plotly_chart(create_channel_discrimination_chart(df_filtered))
# Render the selected dashboard page
render_dashboard(page, df_filtered)
|