File size: 7,335 Bytes
b26a28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7313e9a
b26a28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from typing import List, Optional, Tuple

import torch
from torch import Tensor
from torch import nn
from transformers import RobertaModel

from faknow.model.layers.layer import TextCNNLayer
from faknow.model.model import AbstractModel
import pandas as pd


class _MLP(nn.Module):
    def __init__(self,
                 input_dim: int,
                 embed_dims: List[int],
                 dropout_rate: float,
                 output_layer=True):
        super().__init__()
        layers = list()
        for embed_dim in embed_dims:
            layers.append(nn.Linear(input_dim, embed_dim))
            layers.append(nn.BatchNorm1d(embed_dim))
            layers.append(nn.ReLU())
            layers.append(nn.Dropout(p=dropout_rate))
            input_dim = embed_dim
        if output_layer:
            layers.append(torch.nn.Linear(input_dim, 1))
        self.mlp = torch.nn.Sequential(*layers)

    def forward(self, x: Tensor) -> Tensor:
        """

        Args:
            x (Tensor): shared feature from domain and text, shape=(batch_size, embed_dim)

        """
        return self.mlp(x)


class _MaskAttentionLayer(torch.nn.Module):
    """
    Compute attention layer
    """
    def __init__(self, input_size: int):
        super(_MaskAttentionLayer, self).__init__()
        self.attention_layer = torch.nn.Linear(input_size, 1)

    def forward(self,
                inputs: Tensor,
                mask: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
        weights = self.attention_layer(inputs).view(-1, inputs.size(1))
        if mask is not None:
            weights = weights.masked_fill(mask == 0, float("-inf"))
        weights = torch.softmax(weights, dim=-1).unsqueeze(1)
        outputs = torch.matmul(weights, inputs).squeeze(1)
        return outputs, weights


class MDFEND(AbstractModel):
    r"""
    MDFEND: Multi-domain Fake News Detection, CIKM 2021
    paper: https://dl.acm.org/doi/10.1145/3459637.3482139
    code: https://github.com/kennqiang/MDFEND-Weibo21
    """
    def __init__(self,
                 pre_trained_bert_name: str,
                 domain_num: int,
                 mlp_dims: Optional[List[int]] = None,
                 dropout_rate=0.2,
                 expert_num=5):
        """

        Args:
            pre_trained_bert_name (str): the name or local path of pre-trained bert model
            domain_num (int): total number of all domains
            mlp_dims (List[int]): a list of the dimensions in MLP layer, if None, [384] will be taken as default, default=384
            dropout_rate (float): rate of Dropout layer, default=0.2
            expert_num (int): number of experts also called TextCNNLayer, default=5
        """
        super(MDFEND, self).__init__()
        self.domain_num = domain_num
        self.expert_num = expert_num
        self.bert = RobertaModel.from_pretrained(
            pre_trained_bert_name).requires_grad_(False)
        self.embedding_size = self.bert.config.hidden_size
        self.loss_func = nn.BCELoss()
        if mlp_dims is None:
            mlp_dims = [384]

        filter_num = 64
        filter_sizes = [1, 2, 3, 5, 10]
        experts = [
            TextCNNLayer(self.embedding_size, filter_num, filter_sizes)
            for _ in range(self.expert_num)
        ]
        self.experts = nn.ModuleList(experts)

        self.gate = nn.Sequential(
            nn.Linear(self.embedding_size * 2, mlp_dims[-1]), nn.ReLU(),
            nn.Linear(mlp_dims[-1], self.expert_num), nn.Softmax(dim=1))

        self.attention = _MaskAttentionLayer(self.embedding_size)

        self.domain_embedder = nn.Embedding(num_embeddings=self.domain_num,
                                            embedding_dim=self.embedding_size)
        self.classifier = _MLP(320, mlp_dims, dropout_rate)

    def forward(self, token_id: Tensor, mask: Tensor,
                domain: Tensor) -> Tensor:
        """

        Args:
            token_id (Tensor): token ids from bert tokenizer, shape=(batch_size, max_len)
            mask (Tensor): mask from bert tokenizer, shape=(batch_size, max_len)
            domain (Tensor): domain id, shape=(batch_size,)

        Returns:
            FloatTensor: the prediction of being fake, shape=(batch_size,)
        """
        text_embedding = self.bert(token_id,
                                   attention_mask=mask).last_hidden_state
        attention_feature, _ = self.attention(text_embedding, mask)

        domain_embedding = self.domain_embedder(domain.view(-1, 1)).squeeze(1)

        gate_input = torch.cat([domain_embedding, attention_feature], dim=-1)
        gate_output = self.gate(gate_input)

        shared_feature = 0
        for i in range(self.expert_num):
            expert_feature = self.experts[i](text_embedding)
            shared_feature += (expert_feature * gate_output[:, i].unsqueeze(1))

        label_pred = self.classifier(shared_feature)

        return torch.sigmoid(label_pred.squeeze(1))

    def calculate_loss(self, data) -> Tensor:
        """
        calculate loss via BCELoss

        Args:
            data (dict): batch data dict

        Returns:
            loss (Tensor): loss value
        """

        token_ids = data['text']['token_id']
        masks = data['text']['mask']
        domains = data['domain']
        labels = data['label']
        output = self.forward(token_ids, masks, domains)
        return self.loss_func(output, labels.float())

    def predict(self, data_without_label) -> Tensor:
        """
        predict the probability of being fake news

        Args:
            data_without_label (Dict[str, Any]): batch data dict

        Returns:
            Tensor: one-hot probability, shape=(batch_size, 2)
        """

        token_ids = data_without_label['text']['token_id']
        masks = data_without_label['text']['mask']
        domains = data_without_label['domain']


        output_prob = self.forward(token_ids, masks,domains)

        return output_prob
from faknow.data.dataset.text import TextDataset
from faknow.data.process.text_process import TokenizerFromPreTrained
from faknow.evaluate.evaluator import Evaluator

import torch
from torch.utils.data import DataLoader
testing_path = "data/test_data.json"

df = pd.read_json(testing_path)
df.head()
df =df[:100]
df["label"] = int(0)
df.head()
print(len(df))
new_testing_json_path = "data/testing.json"
df.to_json(new_testing_json_path, orient='records')

MODEL_SAVE_PATH = "models/last-epoch-model-2024-03-08-15_34_03_6.pth"

max_len, bert = 160 , 'sinhala-nlp/sinbert-sold-si'
tokenizer = TokenizerFromPreTrained(max_len, bert)

# dataset
batch_size = 100


testing_set = TextDataset(new_testing_json_path, ['text'], tokenizer)
testing_loader = DataLoader(testing_set, batch_size, shuffle=False)

# prepare model
domain_num = 3

model = MDFEND(bert, domain_num , expert_num=18 , mlp_dims = [5080 ,4020, 3010, 2024 ,1012 ,606 , 400])
model.load_state_dict(torch.load(f=MODEL_SAVE_PATH, map_location=torch.device('cpu')))



outputs = []
for batch_data in testing_loader:
      outputs.append(model.predict(batch_data))
outputs
# 1 ====> offensive
# 0 ====> not offensive
label = []
for output in outputs:
  for out in output:
    output_prob = out.item()
    if output_prob >= 0.5:
      label.append(1)
    else:
      label.append(0)

label