|
import os |
|
from typing import ( |
|
Any, |
|
Union, |
|
) |
|
import zipfile |
|
import streamlit as st |
|
from streamlit.runtime.uploaded_file_manager import ( |
|
UploadedFile, |
|
UploadedFileRec, |
|
UploadedFileManager, |
|
) |
|
from streamlit.runtime.scriptrunner import get_script_run_ctx |
|
from supabase.client import Client |
|
from langchain.vectorstores.supabase import SupabaseVectorStore |
|
from components_keys import ComponentsKeys |
|
from loaders.audio import process_audio |
|
from loaders.txt import process_txt |
|
from loaders.csv import process_csv |
|
from loaders.markdown import process_markdown |
|
from loaders.pdf import process_pdf |
|
from loaders.html import ( |
|
create_html_file, |
|
delete_tempfile, |
|
get_html, |
|
process_html, |
|
) |
|
from loaders.powerpoint import process_powerpoint |
|
from loaders.docx import process_docx |
|
from utils import compute_sha1_from_content |
|
|
|
|
|
ctx = get_script_run_ctx() |
|
manager = UploadedFileManager() |
|
file_processors = { |
|
".txt": process_txt, |
|
".csv": process_csv, |
|
".md": process_markdown, |
|
".markdown": process_markdown, |
|
".m4a": process_audio, |
|
".mp3": process_audio, |
|
".webm": process_audio, |
|
".mp4": process_audio, |
|
".mpga": process_audio, |
|
".wav": process_audio, |
|
".mpeg": process_audio, |
|
".pdf": process_pdf, |
|
".html": process_html, |
|
".pptx": process_powerpoint, |
|
".docx": process_docx |
|
} |
|
|
|
def file_uploader(supabase, vector_store): |
|
|
|
|
|
|
|
accepted_file_extensions = list(file_processors.keys()) |
|
accept_multiple_files = st.secrets.self_hosted == "true" |
|
if accept_multiple_files: |
|
accepted_file_extensions += [".zip"] |
|
|
|
files = st.file_uploader( |
|
"**Upload a file**", |
|
accept_multiple_files=accept_multiple_files, |
|
type=accepted_file_extensions, |
|
key=ComponentsKeys.FILE_UPLOADER, |
|
) |
|
if st.secrets.self_hosted == "false": |
|
st.markdown("**In demo mode, the max file size is 1MB**") |
|
if st.button("Add to Database"): |
|
|
|
if isinstance(files, UploadedFile): |
|
filter_file(files, supabase, vector_store) |
|
|
|
elif isinstance(files, list): |
|
for file in files: |
|
filter_file(file, supabase, vector_store) |
|
|
|
def file_already_exists(supabase, file): |
|
file_sha1 = compute_sha1_from_content(file.getvalue()) |
|
response = supabase.table("documents").select("id").eq("metadata->>file_sha1", file_sha1).execute() |
|
return len(response.data) > 0 |
|
|
|
def file_to_uploaded_file(file: Any) -> Union[None, UploadedFile]: |
|
"""Convert a file to a streamlit `UploadedFile` object. |
|
|
|
This allows us to unzip files and treat them the same way |
|
streamlit treats files uploaded through the file uploader. |
|
|
|
Parameters |
|
--------- |
|
file : Any |
|
The file. Can be any file supported by this app. |
|
|
|
Returns |
|
------- |
|
Union[None, UploadedFile] |
|
The file converted to a streamlit `UploadedFile` object. |
|
Returns `None` if the script context cannot be grabbed. |
|
""" |
|
|
|
if ctx is None: |
|
print("script context not found, skipping uploading file:", file.name) |
|
return |
|
|
|
file_extension = os.path.splitext(file.name)[-1] |
|
file_name = file.name |
|
file_data = file.read() |
|
|
|
|
|
uploaded_file_rec = UploadedFileRec(None, file_name, file_extension, file_data) |
|
uploaded_file_rec = manager.add_file( |
|
ctx.session_id, |
|
ComponentsKeys.FILE_UPLOADER, |
|
uploaded_file_rec, |
|
) |
|
return UploadedFile(uploaded_file_rec) |
|
|
|
def filter_zip_file( |
|
file: UploadedFile, |
|
supabase: Client, |
|
vector_store: SupabaseVectorStore, |
|
) -> None: |
|
"""Unzip the zip file then filter each unzipped file. |
|
|
|
Parameters |
|
---------- |
|
file : UploadedFile |
|
The uploaded file from the file uploader. |
|
supabase : Client |
|
The supabase client. |
|
vector_store : SupabaseVectorStore |
|
The vector store in the database. |
|
""" |
|
|
|
with zipfile.ZipFile(file, "r") as z: |
|
unzipped_files = z.namelist() |
|
for unzipped_file in unzipped_files: |
|
with z.open(unzipped_file, "r") as f: |
|
filter_file(f, supabase, vector_store) |
|
|
|
def filter_file(file, supabase, vector_store): |
|
|
|
|
|
if not isinstance(file, UploadedFile): |
|
file = file_to_uploaded_file(file) |
|
|
|
file_extension = os.path.splitext(file.name)[-1] |
|
if file_extension == ".zip": |
|
filter_zip_file(file, supabase, vector_store) |
|
return True |
|
|
|
if file_already_exists(supabase, file): |
|
st.write(f"π {file.name} is already in the database.") |
|
return False |
|
|
|
if file.size < 1: |
|
st.write(f"π¨ {file.name} is empty.") |
|
return False |
|
|
|
if file_extension in file_processors: |
|
if st.secrets.self_hosted == "false": |
|
file_processors[file_extension](vector_store, file, stats_db=supabase) |
|
else: |
|
file_processors[file_extension](vector_store, file, stats_db=None) |
|
st.write(f"β
{file.name} ") |
|
return True |
|
|
|
st.write(f"β {file.name} is not a valid file type.") |
|
return False |
|
|
|
def url_uploader(supabase, vector_store): |
|
url = st.text_area("**Add an url**",placeholder="https://meraGPT.com") |
|
button = st.button("Add the URL to the database") |
|
|
|
if button: |
|
if not st.session_state["overused"]: |
|
html = get_html(url) |
|
if html: |
|
st.write(f"Getting content ... {url} ") |
|
try: |
|
file, temp_file_path = create_html_file(url, html) |
|
except UnicodeEncodeError as e: |
|
st.write(f"β Error encoding character: {e}") |
|
file, temp_file_path = create_html_file(url, html) |
|
ret = filter_file(file, supabase, vector_store) |
|
delete_tempfile(temp_file_path, url, ret) |
|
else: |
|
st.write(f"β Failed to access to {url} .") |
|
else: |
|
st.write("You have reached your daily limit. Please come back later or self host the solution.") |