Spaces:
Sleeping
Sleeping
Asankhaya Sharma
commited on
Commit
·
fc4600f
1
Parent(s):
c4709fb
add the trained model
Browse files- app.py +13 -6
- config.json +39 -0
- pytorch_model.bin +3 -0
- tokenizer.json +0 -0
app.py
CHANGED
@@ -3,7 +3,7 @@ import streamlit as st
|
|
3 |
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
-
checkpoint = "
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
9 |
@st.cache
|
@@ -13,10 +13,11 @@ def load_model(model_name):
|
|
13 |
|
14 |
model = load_model(checkpoint)
|
15 |
|
16 |
-
def infer(input_ids, max_tokens, temperature, top_k, top_p):
|
17 |
|
18 |
output_sequences = model.generate(
|
19 |
input_ids=input_ids,
|
|
|
20 |
max_new_tokens=max_tokens,
|
21 |
temperature=temperature,
|
22 |
top_k=top_k,
|
@@ -39,18 +40,24 @@ st.write("This is a LLM that was fine-tuned on a dataset of investment memos to
|
|
39 |
|
40 |
sent = st.text_area("Text", default_value, height = 400)
|
41 |
|
42 |
-
max_tokens = st.sidebar.slider("Max Tokens", min_value =
|
43 |
temperature = st.sidebar.slider("Temperature", value = 0.8, min_value = 0.0, max_value=1.0, step=0.05)
|
44 |
top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 4)
|
45 |
top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9)
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
if encoded_prompt.size()[-1] == 0:
|
49 |
input_ids = None
|
50 |
else:
|
51 |
input_ids = encoded_prompt
|
52 |
|
53 |
-
output_sequences = infer(input_ids, max_tokens, temperature, top_k, top_p)
|
54 |
|
55 |
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
|
56 |
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
|
@@ -70,4 +77,4 @@ for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
|
|
70 |
generated_sequences.append(total_sequence)
|
71 |
print(total_sequence)
|
72 |
|
73 |
-
st.
|
|
|
3 |
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
+
checkpoint = "."
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
9 |
@st.cache
|
|
|
13 |
|
14 |
model = load_model(checkpoint)
|
15 |
|
16 |
+
def infer(input_ids, bad_words_ids, max_tokens, temperature, top_k, top_p):
|
17 |
|
18 |
output_sequences = model.generate(
|
19 |
input_ids=input_ids,
|
20 |
+
bad_words_ids = bad_words_ids,
|
21 |
max_new_tokens=max_tokens,
|
22 |
temperature=temperature,
|
23 |
top_k=top_k,
|
|
|
40 |
|
41 |
sent = st.text_area("Text", default_value, height = 400)
|
42 |
|
43 |
+
max_tokens = st.sidebar.slider("Max Tokens", min_value = 16, max_value=64)
|
44 |
temperature = st.sidebar.slider("Temperature", value = 0.8, min_value = 0.0, max_value=1.0, step=0.05)
|
45 |
top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 4)
|
46 |
top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9)
|
47 |
|
48 |
+
# print(model.config.max_position_embeddings)
|
49 |
+
|
50 |
+
encoded_prompt = tokenizer.encode(tokenizer.eos_token+sent, max_length=1024, return_tensors="pt", truncation=True)
|
51 |
+
|
52 |
+
# get tokens of words that should not be generated
|
53 |
+
bad_words_ids = tokenizer(["confidential", "angel.co", "angellist.com"], add_special_tokens=False).input_ids
|
54 |
+
|
55 |
if encoded_prompt.size()[-1] == 0:
|
56 |
input_ids = None
|
57 |
else:
|
58 |
input_ids = encoded_prompt
|
59 |
|
60 |
+
output_sequences = infer(input_ids, bad_words_ids, max_tokens, temperature, top_k, top_p)
|
61 |
|
62 |
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
|
63 |
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
|
|
|
77 |
generated_sequences.append(total_sequence)
|
78 |
print(total_sequence)
|
79 |
|
80 |
+
st.markdown(generated_sequences[-1])
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "gpt2-large",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPT2LMHeadModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.1,
|
8 |
+
"bos_token_id": 50256,
|
9 |
+
"embd_pdrop": 0.1,
|
10 |
+
"eos_token_id": 50256,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"layer_norm_epsilon": 1e-05,
|
13 |
+
"model_type": "gpt2",
|
14 |
+
"n_ctx": 1024,
|
15 |
+
"n_embd": 1280,
|
16 |
+
"n_head": 20,
|
17 |
+
"n_inner": null,
|
18 |
+
"n_layer": 36,
|
19 |
+
"n_positions": 1024,
|
20 |
+
"reorder_and_upcast_attn": false,
|
21 |
+
"resid_pdrop": 0.1,
|
22 |
+
"scale_attn_by_inverse_layer_idx": false,
|
23 |
+
"scale_attn_weights": true,
|
24 |
+
"summary_activation": null,
|
25 |
+
"summary_first_dropout": 0.1,
|
26 |
+
"summary_proj_to_labels": true,
|
27 |
+
"summary_type": "cls_index",
|
28 |
+
"summary_use_proj": true,
|
29 |
+
"task_specific_params": {
|
30 |
+
"text-generation": {
|
31 |
+
"do_sample": true,
|
32 |
+
"max_length": 50
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"torch_dtype": "float32",
|
36 |
+
"transformers_version": "4.27.0.dev0",
|
37 |
+
"use_cache": true,
|
38 |
+
"vocab_size": 50257
|
39 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90483692644e017cc03a2b5470912ab80369b4a79deb4f031e3fced773988bbb
|
3 |
+
size 3134031497
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|