Spaces:
Sleeping
Sleeping
File size: 10,254 Bytes
59a9ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from opt_einsum import contract as einsum
import copy
import dgl
from util import base_indices, RTs_by_torsion, xyzs_in_base_frame, rigid_from_3_points
def init_lecun_normal(module, scale=1.0):
def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2):
normal = torch.distributions.normal.Normal(0, 1)
alpha = (a - mu) / sigma
beta = (b - mu) / sigma
alpha_normal_cdf = normal.cdf(torch.tensor(alpha))
p = alpha_normal_cdf + (normal.cdf(torch.tensor(beta)) - alpha_normal_cdf) * uniform
v = torch.clamp(2 * p - 1, -1 + 1e-8, 1 - 1e-8)
x = mu + sigma * np.sqrt(2) * torch.erfinv(v)
x = torch.clamp(x, a, b)
return x
def sample_truncated_normal(shape, scale=1.0):
stddev = np.sqrt(scale/shape[-1])/.87962566103423978 # shape[-1] = fan_in
return stddev * truncated_normal(torch.rand(shape))
module.weight = torch.nn.Parameter( (sample_truncated_normal(module.weight.shape)) )
return module
def init_lecun_normal_param(weight, scale=1.0):
def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2):
normal = torch.distributions.normal.Normal(0, 1)
alpha = (a - mu) / sigma
beta = (b - mu) / sigma
alpha_normal_cdf = normal.cdf(torch.tensor(alpha))
p = alpha_normal_cdf + (normal.cdf(torch.tensor(beta)) - alpha_normal_cdf) * uniform
v = torch.clamp(2 * p - 1, -1 + 1e-8, 1 - 1e-8)
x = mu + sigma * np.sqrt(2) * torch.erfinv(v)
x = torch.clamp(x, a, b)
return x
def sample_truncated_normal(shape, scale=1.0):
stddev = np.sqrt(scale/shape[-1])/.87962566103423978 # shape[-1] = fan_in
return stddev * truncated_normal(torch.rand(shape))
weight = torch.nn.Parameter( (sample_truncated_normal(weight.shape)) )
return weight
# for gradient checkpointing
def create_custom_forward(module, **kwargs):
def custom_forward(*inputs):
return module(*inputs, **kwargs)
return custom_forward
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class Dropout(nn.Module):
# Dropout entire row or column
def __init__(self, broadcast_dim=None, p_drop=0.15):
super(Dropout, self).__init__()
# give ones with probability of 1-p_drop / zeros with p_drop
self.sampler = torch.distributions.bernoulli.Bernoulli(torch.tensor([1-p_drop]))
self.broadcast_dim=broadcast_dim
self.p_drop=p_drop
def forward(self, x):
if not self.training: # no drophead during evaluation mode
return x
shape = list(x.shape)
if not self.broadcast_dim == None:
shape[self.broadcast_dim] = 1
mask = self.sampler.sample(shape).to(x.device).view(shape)
x = mask * x / (1.0 - self.p_drop)
return x
def rbf(D):
# Distance radial basis function
D_min, D_max, D_count = 0., 20., 36
D_mu = torch.linspace(D_min, D_max, D_count).to(D.device)
D_mu = D_mu[None,:]
D_sigma = (D_max - D_min) / D_count
D_expand = torch.unsqueeze(D, -1)
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
return RBF
def get_seqsep(idx):
'''
Input:
- idx: residue indices of given sequence (B,L)
Output:
- seqsep: sequence separation feature with sign (B, L, L, 1)
Sergey found that having sign in seqsep features helps a little
'''
seqsep = idx[:,None,:] - idx[:,:,None]
sign = torch.sign(seqsep)
neigh = torch.abs(seqsep)
neigh[neigh > 1] = 0.0 # if bonded -- 1.0 / else 0.0
neigh = sign * neigh
return neigh.unsqueeze(-1)
def make_full_graph(xyz, pair, idx, top_k=64, kmin=9):
'''
Input:
- xyz: current backbone cooordinates (B, L, 3, 3)
- pair: pair features from Trunk (B, L, L, E)
- idx: residue index from ground truth pdb
Output:
- G: defined graph
'''
B, L = xyz.shape[:2]
device = xyz.device
# seq sep
sep = idx[:,None,:] - idx[:,:,None]
b,i,j = torch.where(sep.abs() > 0)
src = b*L+i
tgt = b*L+j
G = dgl.graph((src, tgt), num_nodes=B*L).to(device)
G.edata['rel_pos'] = (xyz[b,j,:] - xyz[b,i,:]).detach() # no gradient through basis function
return G, pair[b,i,j][...,None]
def make_topk_graph(xyz, pair, idx, top_k=64, kmin=32, eps=1e-6):
'''
Input:
- xyz: current backbone cooordinates (B, L, 3, 3)
- pair: pair features from Trunk (B, L, L, E)
- idx: residue index from ground truth pdb
Output:
- G: defined graph
'''
B, L = xyz.shape[:2]
device = xyz.device
# distance map from current CA coordinates
D = torch.cdist(xyz, xyz) + torch.eye(L, device=device).unsqueeze(0)*999.9 # (B, L, L)
# seq sep
sep = idx[:,None,:] - idx[:,:,None]
sep = sep.abs() + torch.eye(L, device=device).unsqueeze(0)*999.9
D = D + sep*eps
# get top_k neighbors
D_neigh, E_idx = torch.topk(D, min(top_k, L), largest=False) # shape of E_idx: (B, L, top_k)
topk_matrix = torch.zeros((B, L, L), device=device)
topk_matrix.scatter_(2, E_idx, 1.0)
# put an edge if any of the 3 conditions are met:
# 1) |i-j| <= kmin (connect sequentially adjacent residues)
# 2) top_k neighbors
cond = torch.logical_or(topk_matrix > 0.0, sep < kmin)
b,i,j = torch.where(cond)
src = b*L+i
tgt = b*L+j
G = dgl.graph((src, tgt), num_nodes=B*L).to(device)
G.edata['rel_pos'] = (xyz[b,j,:] - xyz[b,i,:]).detach() # no gradient through basis function
return G, pair[b,i,j][...,None]
def make_rotX(angs, eps=1e-6):
B,L = angs.shape[:2]
NORM = torch.linalg.norm(angs, dim=-1) + eps
RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1)
RTs[:,:,1,1] = angs[:,:,0]/NORM
RTs[:,:,1,2] = -angs[:,:,1]/NORM
RTs[:,:,2,1] = angs[:,:,1]/NORM
RTs[:,:,2,2] = angs[:,:,0]/NORM
return RTs
# rotate about the z axis
def make_rotZ(angs, eps=1e-6):
B,L = angs.shape[:2]
NORM = torch.linalg.norm(angs, dim=-1) + eps
RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1)
RTs[:,:,0,0] = angs[:,:,0]/NORM
RTs[:,:,0,1] = -angs[:,:,1]/NORM
RTs[:,:,1,0] = angs[:,:,1]/NORM
RTs[:,:,1,1] = angs[:,:,0]/NORM
return RTs
# rotate about an arbitrary axis
def make_rot_axis(angs, u, eps=1e-6):
B,L = angs.shape[:2]
NORM = torch.linalg.norm(angs, dim=-1) + eps
RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1)
ct = angs[:,:,0]/NORM
st = angs[:,:,1]/NORM
u0 = u[:,:,0]
u1 = u[:,:,1]
u2 = u[:,:,2]
RTs[:,:,0,0] = ct+u0*u0*(1-ct)
RTs[:,:,0,1] = u0*u1*(1-ct)-u2*st
RTs[:,:,0,2] = u0*u2*(1-ct)+u1*st
RTs[:,:,1,0] = u0*u1*(1-ct)+u2*st
RTs[:,:,1,1] = ct+u1*u1*(1-ct)
RTs[:,:,1,2] = u1*u2*(1-ct)-u0*st
RTs[:,:,2,0] = u0*u2*(1-ct)-u1*st
RTs[:,:,2,1] = u1*u2*(1-ct)+u0*st
RTs[:,:,2,2] = ct+u2*u2*(1-ct)
return RTs
class ComputeAllAtomCoords(nn.Module):
def __init__(self):
super(ComputeAllAtomCoords, self).__init__()
self.base_indices = nn.Parameter(base_indices, requires_grad=False)
self.RTs_in_base_frame = nn.Parameter(RTs_by_torsion, requires_grad=False)
self.xyzs_in_base_frame = nn.Parameter(xyzs_in_base_frame, requires_grad=False)
def forward(self, seq, xyz, alphas, non_ideal=False, use_H=True):
B,L = xyz.shape[:2]
Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:], non_ideal=non_ideal)
RTF0 = torch.eye(4).repeat(B,L,1,1).to(device=Rs.device)
# bb
RTF0[:,:,:3,:3] = Rs
RTF0[:,:,:3,3] = Ts
# omega
RTF1 = torch.einsum(
'brij,brjk,brkl->bril',
RTF0, self.RTs_in_base_frame[seq,0,:], make_rotX(alphas[:,:,0,:]))
# phi
RTF2 = torch.einsum(
'brij,brjk,brkl->bril',
RTF0, self.RTs_in_base_frame[seq,1,:], make_rotX(alphas[:,:,1,:]))
# psi
RTF3 = torch.einsum(
'brij,brjk,brkl->bril',
RTF0, self.RTs_in_base_frame[seq,2,:], make_rotX(alphas[:,:,2,:]))
# CB bend
basexyzs = self.xyzs_in_base_frame[seq]
NCr = 0.5*(basexyzs[:,:,2,:3]+basexyzs[:,:,0,:3])
CAr = (basexyzs[:,:,1,:3])
CBr = (basexyzs[:,:,4,:3])
CBrotaxis1 = (CBr-CAr).cross(NCr-CAr)
CBrotaxis1 /= torch.linalg.norm(CBrotaxis1, dim=-1, keepdim=True)+1e-8
# CB twist
NCp = basexyzs[:,:,2,:3] - basexyzs[:,:,0,:3]
NCpp = NCp - torch.sum(NCp*NCr, dim=-1, keepdim=True)/ torch.sum(NCr*NCr, dim=-1, keepdim=True) * NCr
CBrotaxis2 = (CBr-CAr).cross(NCpp)
CBrotaxis2 /= torch.linalg.norm(CBrotaxis2, dim=-1, keepdim=True)+1e-8
CBrot1 = make_rot_axis(alphas[:,:,7,:], CBrotaxis1 )
CBrot2 = make_rot_axis(alphas[:,:,8,:], CBrotaxis2 )
RTF8 = torch.einsum(
'brij,brjk,brkl->bril',
RTF0, CBrot1,CBrot2)
# chi1 + CG bend
RTF4 = torch.einsum(
'brij,brjk,brkl,brlm->brim',
RTF8,
self.RTs_in_base_frame[seq,3,:],
make_rotX(alphas[:,:,3,:]),
make_rotZ(alphas[:,:,9,:]))
# chi2
RTF5 = torch.einsum(
'brij,brjk,brkl->bril',
RTF4, self.RTs_in_base_frame[seq,4,:],make_rotX(alphas[:,:,4,:]))
# chi3
RTF6 = torch.einsum(
'brij,brjk,brkl->bril',
RTF5,self.RTs_in_base_frame[seq,5,:],make_rotX(alphas[:,:,5,:]))
# chi4
RTF7 = torch.einsum(
'brij,brjk,brkl->bril',
RTF6,self.RTs_in_base_frame[seq,6,:],make_rotX(alphas[:,:,6,:]))
RTframes = torch.stack((
RTF0,RTF1,RTF2,RTF3,RTF4,RTF5,RTF6,RTF7,RTF8
),dim=2)
xyzs = torch.einsum(
'brtij,brtj->brti',
RTframes.gather(2,self.base_indices[seq][...,None,None].repeat(1,1,1,4,4)), basexyzs
)
if use_H:
return RTframes, xyzs[...,:3]
else:
return RTframes, xyzs[...,:14,:3]
|