Spaces:
Running
on
T4
Running
on
T4
File size: 41,853 Bytes
59a9ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 |
# utility functions for dealing with contigs during hallucination
import numpy as np
import random, copy, torch, geometry, os, sys
from kinematics import xyz_to_t2d
def parse_range_string(el):
''' Splits string with integer or integer range into start and end ints. '''
if '-' in el:
s,e = el.split('-')
s,e = int(s), int(e)
else:
s,e = int(el), int(el)
return s,e
def ranges_to_indexes(range_string):
'''Converts a string containig comma-separated numeric ranges to a list of integers'''
idx = []
for x in range_string.split(','):
start, end = parse_range_string(x)
idx.extend(np.arange(start, end+1))
return np.array(idx)
def parse_contigs(contig_input, pdb_id):
'''
Input: contig start/end by pdb chain and residue number as in the pdb file
ex - B12-17
Output: corresponding start/end indices of the "features" numpy array (idx0)
'''
contigs = []
for con in contig_input.split(','):
pdb_ch = con[0]
pdb_s, pdb_e = parse_range_string(con[1:])
np_s = pdb_id.index((pdb_ch, pdb_s))
np_e = pdb_id.index((pdb_ch, pdb_e))
contigs.append([np_s, np_e])
return contigs
def mk_feat_hal_and_mappings(hal_2_ref_idx0, pdb_out):
#####################################
# rearrange ref features according to hal_2_ref_idx0
#####################################
#1. find corresponding idx0 in hal and ref
hal_idx0 = []
ref_idx0 = []
for hal, ref in enumerate(hal_2_ref_idx0):
if ref is not None:
hal_idx0.append(hal)
ref_idx0.append(ref)
hal_idx0 = np.array(hal_idx0, dtype=int)
ref_idx0 = np.array(ref_idx0, dtype=int)
#2. rearrange the 6D features
hal_len = len(hal_2_ref_idx0)
if 'feat' in pdb_out:
d_feat = pdb_out['feat'].shape[3:]
feat_hal = np.zeros((1, hal_len, hal_len) + d_feat)
feat_ref = pdb_out['feat'] # (B,L,L,...)
feat_hal[:, hal_idx0[:,None], hal_idx0[None,:]] = feat_ref[:, ref_idx0[:,None], ref_idx0[None,:]]
else:
feat_hal = None
#3. make the 1d binary mask, for backwards compatibility
hal_2_ref_idx0 = np.array(hal_2_ref_idx0, dtype=np.float32) # convert None to NaN
mask_1d = (~np.isnan(hal_2_ref_idx0)).astype(float)
mask_1d = mask_1d[None]
#####################################
# mappings between hal and ref
#####################################
mappings = {
'con_hal_idx0': hal_idx0.tolist(),
'con_ref_idx0': ref_idx0.tolist(),
'con_hal_pdb_idx': [('A',i+1) for i in hal_idx0],
'con_ref_pdb_idx': [pdb_out['pdb_idx'][i] for i in ref_idx0],
'mask_1d': mask_1d,
}
return feat_hal, mappings
def scatter_feats(template_mask, feat_1d_ref=None, feat_2d_ref=None, pdb_idx=None):
'''
Scatters 1D and/or 2D reference features according to mappings in hal_2_ref_idx0
Inputs
----------
hal_2_ref_idx0: (list; length=L_hal)
List mapping hal_idx0 positions to ref_idx0 positions.
"None" used for indices that do not map to ref.
ex: [None, None, 3, 4, 5, None, None, None, 34, 35, 36]
feat_1d_ref: (np.array; (batch, L_ref, ...))
1D refence features to scatter
feat_1d_ref: (np.array; (batch, L_ref, L_ref, ...))
pdb_idx: (list)
List of pdb chain and residue numbers, in the order that pdb features were read/parsed.
Outputs
----------
feat_1d_hal: (np.array, (batch, L_hal, ...))
Scattered 1d reference features. "None" mappings are 0.
feat_2d_hal: (np.array, (batch, L_hal, L_hal, ...))
Scattered 2d reference features. "None" mappings are 0.
mappings: (dict)
Keeps track of corresponding possitions in ref and hal proteins.
'''
hal_2_ref_idx0, _ = contigs.sample_mask(template_mask, pdb_idx)
out = {}
# Find corresponding idx0 in hal and ref
hal_idx0 = []
ref_idx0 = []
hal_len = len(hal_2_ref_idx0)
for hal, ref in enumerate(hal_2_ref_idx0):
if ref is not None:
hal_idx0.append(hal)
ref_idx0.append(ref)
hal_idx0 = np.array(hal_idx0, dtype=int)
ref_idx0 = np.array(ref_idx0, dtype=int)
# Make the 1d binary mask, for backwards compatibility
hal_2_ref_idx0 = np.array(hal_2_ref_idx0, dtype=np.float32) # convert None to NaN
mask_1d = (~np.isnan(hal_2_ref_idx0)).astype(float)
mask_1d = mask_1d[None]
# scatter 2D features
if feat_2d_ref is not None:
B = feat_2d_ref.shape[0]
d_feat = feat_2d_ref.shape[3:]
feat_2d_hal = np.zeros((B, hal_len, hal_len)+d_feat)
feat_2d_hal[:, hal_idx0[:,None], hal_idx0[None,:]] = feat_2d_ref[:, ref_idx0[:,None], ref_idx0[None,:]]
out['feat_2d_hal'] = feat_2d_hal
# scatter 1D features
if feat_1d_ref is not None:
B = feat_1d_ref.shape[0]
d_feat = feat_1d_ref.shape[2:]
feat_1d_hal = np.zeros((B, hal_len)+d_feat)
feat_1d_hal[:, hal_idx0] = feat_1d_ref[:, ref_idx0]
out['feat_1d_hal'] = feat_1d_hal
# Mappings between hal and ref
mappings = {
'con_hal_idx0': hal_idx0.tolist(),
'con_ref_idx0': ref_idx0.tolist(),
'mask_1d': mask_1d,
}
if pdb_idx is not None:
mappings.update({
'con_hal_pdb_idx': [('A',i+1) for i in hal_idx0],
'con_ref_pdb_idx': [pdb_idx[i] for i in ref_idx0],
})
out['mappings'] = mappings
return out
def scatter_contigs(contigs, pdb_out, L_range, keep_order=False, min_gap=0):
'''
Randomly places contigs in a protein within the length range.
Inputs
Contig: A continuous range of residues from the pdb.
Inclusive of the begining and end
Must start with the chain number. Comma separated
ex: B6-11,A12-19
pdb_out: dictionary from the prep_input function
L_range: String range of possible lengths.
ex: 90-110
ex: 70
keep_order: keep contigs in the provided order or randomly permute
min_gap: minimum number of amino acids separating contigs
Outputs
feat_hal: target pdb features to hallucinate
mappings: dictionary of ways to convert from the hallucinated protein
to the reference protein
'''
ref_pdb_2_idx0 = {pdb_idx:i for i, pdb_idx in enumerate(pdb_out['pdb_idx'])}
#####################################
# make a map from hal_idx0 to ref_idx0. Has None for gap regions
#####################################
#1. Permute contig order
contigs = contigs.split(',')
if not keep_order:
random.shuffle(contigs)
#2. convert to ref_idx0
contigs_ref_idx0 = []
for con in contigs:
chain = con[0]
s, e = parse_range_string(con[1:])
contigs_ref_idx0.append( [ref_pdb_2_idx0[(chain, i)] for i in range(s, e+1)] )
#3. Add minimum gap size
for i in range(len(contigs_ref_idx0) - 1):
contigs_ref_idx0[i] += [None] * min_gap
#4. Sample protein length
L_low, L_high = parse_range_string(L_range)
L_hal = np.random.randint(L_low, L_high+1)
L_con = 0
for con in contigs_ref_idx0:
L_con += len(con)
L_gaps = L_hal - L_con
if L_gaps <= 1:
print("Error: The protein isn't long enough to incorporate all the contigs."
"Consider reduce the min_gap or increasing L_range")
return
#5. Randomly insert contigs into gaps
hal_2_ref_idx0 = np.array([None] * L_gaps, dtype=float) # inserting contigs into this
n_contigs = len(contigs_ref_idx0)
insertion_idxs = np.random.randint(L_gaps + 1, size=n_contigs)
insertion_idxs.sort()
for idx, con in zip(insertion_idxs[::-1], contigs_ref_idx0[::-1]):
hal_2_ref_idx0 = np.insert(hal_2_ref_idx0, idx, con)
#6. Convert mask to feat_hal and mappings
hal_2_ref_idx0 = [int(el) if ~np.isnan(el) else None for el in hal_2_ref_idx0] # convert nan to None
feat_hal, mappings = mk_feat_hal_and_mappings(hal_2_ref_idx0, pdb_out)
#7. Generate str of the sampled mask
contig_positive = np.array(hal_2_ref_idx0) != None
boundaries = np.where(np.diff(contig_positive))[0]
start_idx0 = np.concatenate([np.array([0]), boundaries+1])
end_idx0 = np.concatenate([boundaries, np.array([contig_positive.shape[0]])-1])
lengths = end_idx0 - start_idx0 + 1
is_contig = contig_positive[start_idx0]
sampled_mask = []
con_counter = 0
for i, is_con in enumerate(is_contig):
if is_con:
sampled_mask.append(contigs[con_counter])
con_counter += 1
else:
len_gap = lengths[i]
sampled_mask.append(f'{len_gap}-{len_gap}')
sampled_mask = ','.join(sampled_mask)
mappings['sampled_mask'] = sampled_mask
return feat_hal, mappings
def get_receptor_contig(ref_pdb_idx):
rec_pdb_idx = [idx for idx in ref_pdb_idx if idx[0]=='R']
return SampledMask.contract(rec_pdb_idx)
def mk_con_to_set(mask, set_id=None, args=None, ref_pdb_idx=None):
'''
Maps a mask or list of contigs to a set_id. If no set_id is provided, it treats
everything as set 0.
Input
-----------
mask (str): Mask or list of contigs. Ex: 3,B6-11,12,A12-19,9 or Ex: B6-11,A12-19
ref_pdb_idx (List(ch, res)): pdb idxs of the reference pdb. Ex: [(A, 2), (A, 3), ...]
args: Arguments object. Must have args.receptor
set_id (list): List of integers. Length must match contigs in mask. Ex: [0,1]
Output
-----------
con_to_set (dict): Maps str of contig to integer
'''
# Extract contigs
cons = [l for l in mask.split(',') if l[0].isalpha()]
# Assign all contigs to set 0 if set_id is not passed
if set_id is None:
set_id = [0] * len(cons)
con_to_set = dict(zip(cons, set_id))
# Assign receptor to set 0
if args.receptor:
receptor_contig = get_receptor_contig(ref_pdb_idx)
con_to_set.update({receptor_contig: 0})
return con_to_set
def parse_range(_range):
if '-' in _range:
s, e = _range.split('-')
else:
s, e = _range, _range
return int(s), int(e)
def parse_contig(contig):
'''
Return the chain, start and end residue in a contig or gap str.
Ex:
'A4-8' --> 'A', 4, 8
'A5' --> 'A', 5, 5
'4-8' --> None, 4, 8
'A' --> 'A', None, None
'''
# is contig
if contig[0].isalpha():
ch = contig[0]
if len(contig) > 1:
s, e = parse_range(contig[1:])
else:
s, e = None, None
# is gap
else:
ch = None
s, e = parse_range(contig)
return ch, s, e
def mask_as_list(sampled_mask):
'''
Make a length L_hal list, with each position pointing to a ref_pdb_idx (or None)
'''
mask_list = []
for l in sampled_mask.split(','):
ch, s, e = parse_contig(l)
# contig
if ch is not None:
mask_list += [(ch, idx) for idx in range(s, e+1)]
# gap
else:
mask_list += [None for _ in range(s, e+1)]
return mask_list
def mask_subset(sampled_mask, subset):
'''
Returns a 1D boolean array of where a subset of the contig is in the hallucinated protein
Input
---------
subset (str): Some chain and residue subset of the contigs. Ex: A10-15
Can also just pass chain. All contig residues from that chain are selected. Ex: R
Ouput
---------
m_1d (np.array): Boolean array where subset appears in the hallucinated protein
'''
mask_list = mask_as_list(sampled_mask)
m_1d = []
ch_subset, s, e = parse_contig(subset)
assert ch_subset.isalpha(), '"Subset" must include a chain reference'
if (s is None) or (e is None):
s = -np.inf
e = np.inf
for l in mask_list:
if l is None:
continue
ch, idx = l
if (ch == ch_subset) and (idx >= s) and (idx <= e):
m_1d.append(True)
else:
m_1d.append(False)
return np.array(m_1d)
def mk_cce_and_hal_mask_2d(sampled_mask, con_to_set=None):
'''
Makes masks for ij pixels where the cce and hallucination loss should be applied.
Inputs
---------------
sampled_mask (str): String of where contigs should be applied. Ex: 3,B6-11,12,A12-19,9
cce_cutoff (float): Apply cce loss to cb-cb distances less than this value. Angstroms.
con_to_set (dict): Dictionary mapping the string of a contig (ex: 'B6-11') to an integer.
L_rec (int): Length of the receptor, if hallucinating in the context of the receptor.
Outputs
---------------
mask_cce (np.array, (L_hal, L_hal)): Boolean array. True where cce loss should be applied.
mask_hal (np.array, (L_hal, L_hal)): Boolean array. True where hallucination loss should be applied.
'''
if con_to_set is None:
con_to_set = mk_con_to_set(sampled_mask)
# Length of hallucinated protein
L_hal, L_max = mask_len(sampled_mask)
assert L_hal == L_max, 'A sampled mask must have gaps of a single length.'
# Map each contig to a 1D boolean mask
m_con = dict()
start_idx = 0
for l in sampled_mask.split(','):
if l[0].isalpha():
s, e = parse_range_string(l[1:])
L_con = e - s + 1
m = np.zeros(L_hal, dtype=bool)
m[start_idx:start_idx+L_con] = True
m_con[l] = m
start_idx += L_con
else:
L_gap, _ = parse_range_string(l)
start_idx += L_gap
# Combine contigs masks from each set to make 2D mask
mask_cce = np.zeros((L_hal, L_hal), dtype=bool)
for set_id in set(con_to_set.values()):
# gather all masks from contigs in the same set
masks = [m_con[k] for k,v in con_to_set.items() if v == set_id]
mask_1D = np.any(masks, axis=0)
update = mask_1D[:,None] * mask_1D[None,:]
mask_cce = np.any([mask_cce, update], axis=0)
# Make mask_hal
mask_hal = ~mask_cce
# Don't apply ANY losses on diagonal
mask_cce[np.arange(L_hal), np.arange(L_hal)] = False
mask_hal[np.arange(L_hal), np.arange(L_hal)] = False
# Don't apply ANY losses to receptor
m_1d_rec = mask_subset(sampled_mask, 'R')
m_2d_rec = m_1d_rec[:, None] * m_1d_rec[None, :]
mask_cce *= ~m_2d_rec
mask_hal *= ~m_2d_rec
return mask_cce, mask_hal
def apply_mask(mask, pdb_out):
'''
Uniformly samples gap lengths, then gathers the ref features
into the target hal features
Inputs
--------------
mask: specify the order and ranges of contigs and gaps
Contig - A continuous range of residues from the pdb.
Inclusive of the begining and end
Must start with the chain number
ex: B6-11
Gap - a gap length or a range of gaps lengths the
model is free to hallucinate
Gap ranges are inclusive of the end
ex: 9-21
ex - '3,B6-11,9-21,A36-42,20-30,A12-24,3-6'
pdb_out: dictionary from the prep_input function
Outputs
-------------
feat_hal: features from pdb_out scattered according to the sampled mask
mappings: dict keeping track of corresponding positions in the ref and hal features
'''
ref_pdb_2_idx0 = {pdb_idx:i for i, pdb_idx in enumerate(pdb_out['pdb_idx'])}
#1. make a map from hal_idx0 to ref_idx0. Has None for gap regions
hal_2_ref_idx0 = []
sampled_mask = []
for el in mask.split(','):
if el[0].isalpha(): # el is a contig
sampled_mask.append(el)
chain = el[0]
s,e = parse_range_string(el[1:])
for i in range(s, e+1):
idx0 = ref_pdb_2_idx0[(chain, i)]
hal_2_ref_idx0.append(idx0)
else: # el is a gap
# sample gap length
s,e = parse_range_string(el)
gap_len = np.random.randint(s, e+1)
hal_2_ref_idx0 += [None]*gap_len
sampled_mask.append(f'{gap_len}-{gap_len}')
#2. Convert mask to feat_hal and mappings
feat_hal, mappings = mk_feat_hal_and_mappings(hal_2_ref_idx0, pdb_out)
#3. Record the mask that was sampled
mappings['sampled_mask'] = ','.join(sampled_mask)
return feat_hal, mappings
def sample_mask(mask, pdb_idx):
'''
Uniformly samples gap lengths, then gathers the ref features
into the target hal features
Inputs
--------------
mask: specify the order and ranges of contigs and gaps
Contig - A continuous range of residues from the pdb.
Inclusive of the begining and end
Must start with the chain number
ex: B6-11
Gap - a gap length or a range of gaps lengths the
model is free to hallucinate
Gap ranges are inclusive of the end
ex: 9-21
ex - '3,B6-11,9-21,A36-42,20-30,A12-24,3-6'
Outputs
-------------
hal_2_ref_idx0: (list; length=L_hal)
List mapping hal_idx0 positions to ref_idx0 positions.
"None" used for indices that do not map to ref.
ex: [None, None, 3, 4, 5, None, None, None, 34, 35, 36]
sampled_mask: (str)
string of the sampled mask, so the transformations can be reapplied
ex - '3-3,B6-11,9-9,A36-42,20-20,A12-24,5-5'
'''
ref_pdb_2_idx0 = {pdb_i:i for i, pdb_i in enumerate(pdb_idx)}
#1. make a map from hal_idx0 to ref_idx0. Has None for gap regions
hal_2_ref_idx0 = []
sampled_mask = []
for el in mask.split(','):
if el[0].isalpha(): # el is a contig
sampled_mask.append(el)
chain = el[0]
s,e = parse_range_string(el[1:])
for i in range(s, e+1):
idx0 = ref_pdb_2_idx0[(chain, i)]
hal_2_ref_idx0.append(idx0)
else: # el is a gap
# sample gap length
s,e = parse_range_string(el)
gap_len = np.random.randint(s, e+1)
hal_2_ref_idx0 += [None]*gap_len
sampled_mask.append(f'{gap_len}-{gap_len}')
return hal_2_ref_idx0, sampled_mask
class GapResampler():
def __init__(self, use_bkg=True):
'''
'''
self.counts_passed = {} # dictionary for tallying counts of gap lengths for designs passing some threshold
self.counts_bkg = {}
self.use_bkg = use_bkg
def clean_mask(self, mask):
'''
Makes mask into a cononical form.
Ensures masks always alternate gap, contig and that
masks begin and end with a gap (even of length 0)
Input
-----------
masks: list of masks (str). Mask format: comma separted list
of alternating gap_length (int or int-int), contig.
Ex - 9,A12-19,15,B45-52 OR 9-9,A12-19,15-15,B45-52
Output
-----------
A canonicalized mask. Ex: N,9,A12-19,15,B45-52,0,C
'''
mask = mask.split(',')
mask_out = []
was_contig = True
was_gap = False
for i, el in enumerate(mask):
is_contig = el[0].isalpha()
is_gap = not is_contig
is_last = i == len(mask) - 1
# accepting gaps as either x-x or just x
if is_gap:
if '-' in el:
x1, x2 = el.split('-')
if x1 != x2:
print(f"Error: Gap must not be a range: {mask}")
return None
gap = x1
else:
gap = el
if is_contig:
contig = el
# gap -> contig: just append new contig
if (was_gap and is_contig):
mask_out.append(contig)
# contig -> gap: just append gap
elif (was_contig and is_gap):
mask_out.append(gap)
# contig -> contig: insert gap of 0, then add contig
elif (was_contig and is_contig):
mask_out.append('0')
mask_out.append(contig)
# gap -> gap: add them
elif (was_gap and is_gap):
combined_len = int(mask_out[-1]) + int(gap)
mask_out[-1] = str(combined_len)
# ensure last mask element is a gap
if (is_last and is_contig):
mask_out.append('0')
# update what previous element was
was_contig = el[0].isalpha()
was_gap = ~is_contig
# add 'N' and 'C' contigs
mask_out.insert(0, 'N')
mask_out.append('C')
return ','.join(mask_out)
def add_mask(self, mask, counting_dict):
'''
Adds counts of gap lengths to counting_dict
Inputs
-----------
masks: list of masks (str). Mask format: comma separted list
of alternating gap_length (int or int-int), contig.
Ex - 9,A12-19,15,B45-52 OR 9-9,A12-19,15-15,B45-52
'''
mask = self.clean_mask(mask)
mask = mask.split(',')
n_gaps = len(mask) // 2
# count occurances of contig,gap,contig triples
for i in range(n_gaps):
con1, gap, con2 = mask[2*i : 2*i+3]
# count gap length
if con1 in counting_dict:
if (gap, con2) in counting_dict[con1]:
counting_dict[con1][(gap, con2)] += 1
else:
counting_dict[con1][(gap, con2)] = 1
else:
counting_dict[con1] = {(gap, con2): 1}
def add_mask_pass(self, mask):
'''
Add a mask that passed to self.counts_passed
'''
self.add_mask(mask, self.counts_passed)
def add_mask_bkg(self, mask):
'''
Add a mask that passed to self.counts_bkg
'''
self.add_mask(mask, self.counts_bkg)
def get_enrichment(self):
'''
Calculate the ratio of counts_passed / count_bkg
Also notes all contigs
'''
if self.use_bkg is False:
print('Please pass in background masks and set self.use_bkg=True')
return
self.counts_enrich = copy.copy(self.counts_passed)
self.con_all = set()
for con1 in self.counts_enrich.keys():
self.con_all |= set([con1])
for gap, con2 in self.counts_enrich[con1].keys():
self.con_all |= set([con2])
bkg = self.counts_bkg[con1][(gap, con2)]
cnt = self.counts_passed[con1][(gap, con2)]
self.counts_enrich[con1][(gap, con2)] = cnt / bkg
def sample_mask(self):
'''
Sample a mask
'''
searching = True
while searching:
n_gaps = len(self.con_all) - 1
mask = ['N']
if self.use_bkg:
counts = self.counts_enrich
else:
counts = self.counts_passed
for i in range(n_gaps):
con_last = mask[-1]
# only allow jump to C as last option
if i == n_gaps - 1:
con_used = set(mask[::2])
else:
con_used = set(mask[::2]+['C'])
con_free = self.con_all - con_used
# get available "jumps" (con -> gap, con) you can make
jumps_all = counts[con_last]
jumps_free = {k:v for k,v in jumps_all.items() if k[1] in con_free}
if len(jumps_free) == 0:
print('No available jumps to continue the mask. Sampling again...')
else:
# normalize counts and sample move
mvs, cnt = zip(*jumps_free.items())
cnt = np.array(cnt)
prob = cnt / cnt.sum()
idx = np.random.choice(len(prob), p=prob)
mv = mvs[idx]
# add to the mask
mask.append(mv[0])
mask.append(mv[1])
# check that mask has the right number of elements
if len(mask) == 2*n_gaps + 1:
searching = False
else:
searching = True
return ','.join(mask[1:-1])
def gaps_as_ranges(self, mask):
'''
Convert gaps of a single int to ranges, for
backwards compatibility reasons
'''
mask_out = []
for el in mask.split(','):
if el[0].isalpha():
mask_out.append(el)
else:
mask_out.append(f'{el}-{el}')
return ','.join(mask_out)
def recover_mask(trb):
'''
Recover the string of the sampled mask given the trb file
'''
L_hal = trb['mask_contig'].shape[0]
mask = []
for idx0 in range(L_hal):
# what is the current idx
if idx0 in trb['con_hal_idx0']:
is_con = True
is_gap = False
else:
is_con = False
is_gap = True
# dealing with the first entry
if idx0 == 0:
if is_gap:
L_gap = 1
elif is_con:
ch, idx = trb['con_ref_pdb_idx'][ trb['con_hal_idx0'].tolist().index(idx0) ]
con_start = f'{ch}{idx}'
# take action based on what happend last time
else:
if (was_gap) and (is_gap):
L_gap +=1
#elif (was_con) and (is_con):
# continue
elif (was_gap) and (is_con):
# end gap
mask.append(f'{L_gap}-{L_gap}')
# start con
ch, idx = trb['con_ref_pdb_idx'][ trb['con_hal_idx0'].tolist().index(idx0) ]
con_start = f'{ch}{idx}'
elif (was_con) and (is_gap):
# end con
ch, idx = trb['con_ref_pdb_idx'][ trb['con_hal_idx0'].tolist().index(idx0) ]
mask.append(f'{con_start}-{idx}')
# start gap
L_gap = 1
# dealing with last entry
if idx0 == L_hal-1:
if is_gap:
mask.append(f'{L_gap}-{L_gap}')
elif is_con: # (edge case not handled: con starts and ends on last idx)
ch, idx = trb['con_ref_pdb_idx'][ trb['con_hal_idx0'].tolist().index(idx0-1) ]
mask.append(f'{con_start}-{idx}')
# update what last position was
was_con = copy.copy(is_con)
was_gap = copy.copy(is_gap)
return ','.join(mask)
def mask_len(mask):
'''
Calculate the min and max possible length that can
be sampled given a mask
'''
L_min = 0
L_max = 0
for el in mask.split(','):
if el[0].isalpha(): # is con
con_s, con_e = el[1:].split('-')
con_s, con_e = int(con_s), int(con_e)
L_con = con_e - con_s + 1
L_min += L_con
L_max += L_con
else: # is gap
if '-' in el:
gap_min, gap_max = el.split('-')
gap_min, gap_max = int(gap_min), int(gap_max)
L_min += gap_min
L_max += gap_max
else:
L_min += int(el)
L_max += int(el)
return L_min, L_max
class SampledMask():
def __init__(self, mask_str, ref_pdb_idx, con_to_set=None):
self.str = mask_str
self.L_hal = len(self)
self.L_ref = len(ref_pdb_idx)
#################
# con indices in hal and ref
#################
self.ref_pdb_idx = ref_pdb_idx
self.hal_pdb_idx = [('A', i) for i in range(1, len(self)+1)]
hal_idx0 = 0
con_ref_pdb_idx = []
con_hal_pdb_idx = []
con_ref_idx0 = []
con_hal_idx0 = []
for l in mask_str.split(','):
ch, s, e = SampledMask.parse_contig(l)
# contig
if ch:
for res in range(s, e+1):
con_ref_pdb_idx.append((ch, res))
con_hal_pdb_idx.append(('A', hal_idx0+1))
con_ref_idx0.append(self.ref_pdb_idx.index((ch, res)))
con_hal_idx0.append(hal_idx0)
hal_idx0 += 1
# gap
else:
for _ in range(s):
hal_idx0 += 1
self.con_mappings = {
'ref_pdb_idx': con_ref_pdb_idx,
'hal_pdb_idx': con_hal_pdb_idx,
'ref_idx0': con_ref_idx0,
'hal_idx0': con_hal_idx0,
}
#################
# con_to_set mapping
#################
if con_to_set:
self.con_to_set = con_to_set
else:
contigs = self.get_contigs()
self.con_to_set = dict(zip(contigs, len(contigs)*[0]))
# set_to_con mapping
set_to_con = {}
for k, v in self.con_to_set.items():
set_to_con[v] = set_to_con.get(v, []) + [k] # invert a dictionary with non-unique values
self.set_to_con = set_to_con
def __len__(self,):
_, L_max = self.mask_len(self.str)
return L_max
def map(self, sel, src, dst):
'''
Convert the contig selection in one indexing scheme to another.
Will return None if selection is not in a contig.
Input
----------
sel (str): selection of a contig range or idx0 range. Can take multiple comma separated values of same type. Ex: A5-10,B2-8 or 3-8,14-21
src (str): <'ref', 'hal'>
dst (str): <'ref_pdb_idx', 'hal_pdb_idx', 'ref_idx0', 'hal_idx0>
'''
out = []
for con in sel.split(','):
ch, s, e = SampledMask.parse_contig(con)
# selection type is pdb_idx
if ch:
src_long = f'{src}_pdb_idx'
mapping = dict(zip(self.con_mappings[src_long], self.con_mappings[dst]))
out += [mapping.get((ch, res)) for res in range(s, e+1)]
# selection type is idx0
else:
src_long = f'{src}_idx0'
mapping = dict(zip(self.con_mappings[src_long], self.con_mappings[dst]))
out += [mapping.get(i) for i in range(s, e+1)]
return out
@staticmethod
def expand(mask_str):
'''
Ex: '2,A3-5,3' --> [None, None, (A,3), (A,4), (A,5), None, None, None]
'''
expanded = []
for l in mask_str.split(','):
ch, s, e = SampledMask.parse_contig(l)
# contig
if ch:
expanded += [(ch, res) for res in range(s, e+1)]
# gap
else:
expanded += [None for _ in range(s)]
return expanded
@staticmethod
def contract(pdb_idx):
'''
Inverse of expand
Ex: [None, None, (A,3), (A,4), (A,5), None, None, None] --> '2,A3-5,3'
'''
contracted = []
l_prev = (None, -200)
first_el_written = False
for l_curr in pdb_idx:
if l_curr is None:
l_curr = (None, -100)
# extend gap
if l_curr == l_prev:
L_gap += 1
# extend con
elif l_curr == (l_prev[0], l_prev[1]+1):
con_e = l_curr[1]
# new gap
elif (l_curr != l_prev) and (l_curr[0] is None):
# write prev con
if 'con_ch' in locals():
contracted.append(f'{con_ch}{con_s}-{con_e}')
L_gap = 1
# new con
elif (l_curr != l_prev) and isinstance(l_curr[0], str):
# write prev con
if isinstance(l_prev[0], str) and ('con_ch' in locals()):
contracted.append(f'{con_ch}{con_s}-{con_e}')
# write prev gap
elif 'L_gap' in locals():
contracted.append(str(L_gap))
con_ch = l_curr[0]
con_s = l_curr[1]
con_e = l_curr[1]
# update l_prev
l_prev = l_curr
# write last element
if isinstance(l_prev[0], str) and ('con_ch' in locals()):
contracted.append(f'{con_ch}{con_s}-{con_e}')
elif 'L_gap' in locals():
contracted.append(str(L_gap))
return ','.join(contracted)
def subset(self, sub):
'''
Make a mask_str that is a subset of the original mask_str
Ex: self.mask_str = '2,A5-20,4', sub='A5-10' --> '2,A5-10,14'
'''
# map from hal_idx0 to ref_pdb_idx
hal_idx0 = self.map(sub, 'ref', 'hal_idx0')
ref_pdb_idx = SampledMask.expand(sub)
mapping = dict(zip(hal_idx0, ref_pdb_idx))
expanded = [mapping.get(idx0) for idx0 in range(len(self))]
return self.contract(expanded)
def mask_len(self, mask):
'''
Technically, can take both sampled and unsampled mask
'''
L_min = 0
L_max = 0
for l in self.str.split(','):
ch, s, e = SampledMask.parse_contig(l)
# contig
if ch:
L_min += e - s + 1
L_max += e - s + 1
# gap
else:
L_min += s
L_max += e
return L_min, L_max
def get_contigs(self, include_receptor=True):
'''
Get a list of all contigs in the mask
'''
[con for con in self.str.split(',') if SampledMask.parse_contig(con)[0]]
contigs = []
for con in self.str.split(','):
ch = SampledMask.parse_contig(con)[0]
if ch == 'R' and include_receptor == False:
continue
if ch:
contigs.append(con)
return contigs
def get_gaps(self,):
'''
Get a list of all gaps in the mask
'''
return [con for con in self.str.split(',') if SampledMask.parse_contig(con)[0] is None]
@staticmethod
def parse_range(_range):
if '-' in _range:
s, e = _range.split('-')
else:
s, e = _range, _range
return int(s), int(e)
@staticmethod
def parse_contig(contig):
'''
Return the chain, start and end residue in a contig or gap str.
Ex:
'A4-8' --> 'A', 4, 8
'A5' --> 'A', 5, 5
'4-8' --> None, 4, 8
'A' --> 'A', None, None
'''
# is contig
if contig[0].isalpha():
ch = contig[0]
if len(contig) > 1:
s, e = SampledMask.parse_range(contig[1:])
else:
s, e = None, None
# is gap
else:
ch = None
s, e = SampledMask.parse_range(contig)
return ch, s, e
def remove_diag(self, m_2d):
'''
Set the diagonal of a 2D boolean array to False
'''
L = m_2d.shape[0]
m_2d[np.arange(L), np.arange(L)] = False
return m_2d
def get_receptor_contig(self,):
'''
Returns None if there is no chain R in the mask_str
'''
receptor_contig = [l for l in self.get_contigs() if 'R' in l]
if len(receptor_contig) == 0:
receptor_contig = None
else:
receptor_contig = ','.join(receptor_contig)
return receptor_contig
def remove_receptor(self, m_2d):
'''
Remove intra-receptor contacts (chain R) from a mask
'''
receptor_contig = self.get_receptor_contig()
if receptor_contig: # has chain R
m_1d = np.zeros(self.L_hal, dtype=bool)
idx = np.array(self.map(receptor_contig, 'ref', 'hal_idx0'))
m_1d[idx] = True
update = m_1d[:, None] * m_1d[None, :]
m_2d = m_2d * ~update
return m_2d
def get_mask_con(self, include_receptor=False):
# Make a 2D boolean mask for each contig set
L = self.L_hal
mask_con = np.zeros([L, L], dtype=bool)
for set_id, contigs in self.set_to_con.items():
m_1d = np.zeros(L, dtype=bool)
for con in contigs:
idx = self.map(con, 'ref', 'hal_idx0')
idx = [l for l in idx if l != None]
idx = np.array(idx, dtype=int)
m_1d[idx] = True
update = m_1d[:, None] * m_1d[None, :]
mask_con = np.any([mask_con, update], axis=0)
# clean up
mask_con = self.remove_diag(mask_con)
if not include_receptor:
mask_con = self.remove_receptor(mask_con)
return mask_con
def get_mask_hal(self,):
mask_hal = ~self.get_mask_con()
mask_hal = self.remove_diag(mask_hal)
mask_hal = self.remove_receptor(mask_hal)
return mask_hal
def get_mask_cce(self, pdb, cce_cutoff=20., include_receptor=False):
'''
Remove ij pixels where contig distances are greater than cce_cutoff.
'''
# start with mask_con
mask_con = self.get_mask_con(include_receptor=include_receptor)
# get ref dists
xyz_ref = torch.tensor(pdb['xyz'][:,:3,:]).float()
c6d_ref = geometry.xyz_to_c6d(xyz_ref[None].permute(0,2,1,3),{'DMAX':20.0}).numpy()
dist = c6d_ref[0,:,:,0] # (L_ref, L_ref)
# scatter
dist_scattered = self.scatter_2d(dist)
# apply cce cuttoff
update = dist_scattered < cce_cutoff
mask_cce = np.all([mask_con, update], axis=0)
return mask_cce
def scatter_2d(self, ref_feat_2d):
'''
Inputs
---------
ref_feat_2d (np.array; (L_ref, L_ref, ...)): Features to be scattered. The first two leading dimensions must be equal to L_ref.
'''
assert ref_feat_2d.shape[:2] == (self.L_ref, self.L_ref), 'ERROR: feat_2d must have leading dimensions of (L_ref, L_ref)'
trailing_dims = ref_feat_2d.shape[2:]
dtype = ref_feat_2d.dtype
hal_feat_2d = np.zeros((self.L_hal, self.L_hal)+trailing_dims, dtype=dtype)
con_hal_idx0 = np.array(self.con_mappings['hal_idx0'])
ref_hal_idx0 = np.array(self.con_mappings['ref_idx0'])
hal_feat_2d[con_hal_idx0[:, None], con_hal_idx0[None, :]] = ref_feat_2d[ref_hal_idx0[:, None], ref_hal_idx0[None, :]]
return hal_feat_2d
def scatter_1d(self, ref_feat_1d):
'''
Inputs
---------
ref_feat_1d (np.array; (L_ref, ...)): Features to be scattered. The first leading dimension must be equal to L_ref.
'''
assert ref_feat_1d.shape[0] == self.L_ref, 'ERROR: feat_1d must have leading dimensions of (L_ref,)'
trailing_dims = ref_feat_1d.shape[1:]
dtype = ref_feat_1d.dtype
hal_feat_1d = np.zeros((self.L_hal,)+trailing_dims, dtype=dtype)
con_hal_idx0 = np.array(self.con_mappings['hal_idx0'])
ref_hal_idx0 = np.array(self.con_mappings['ref_idx0'])
hal_feat_1d[con_hal_idx0] = ref_feat_1d[ref_hal_idx0]
return hal_feat_1d
def idx_for_template(self, gap=200):
'''
Essentially return hal_idx0, except have a large jump for chain B,
to simulate a chain break. If B contains internal jumps in residue
numbering, these are preserved.
'''
is_rec = self.m1d_receptor()
resi_rec = np.array([idx[1] for idx in SampledMask.expand(self.str)
if idx is not None and idx[0]=='R'])
L_binder = sum(~is_rec)
if len(resi_rec)>0:
if is_rec[0]:
# receptor first
idx_tmpl = np.arange(resi_rec[-1]+gap+1, resi_rec[-1]+gap+1+L_binder)
idx_tmpl = np.concatenate([resi_rec, idx_tmpl])
else:
# receptor second
idx_tmpl = np.arange(L_binder)
if resi_rec[0] <= idx_tmpl[-1]+gap:
resi_rec += idx_tmpl[-1] - resi_rec[0] + gap + 1
idx_tmpl = np.concatenate([idx_tmpl, resi_rec])
else:
#when no receptor
idx_tmpl = np.arange(L_binder)
return idx_tmpl
def m1d_receptor(self,):
'''
Get a boolean array, True if the position corresponds to the receptor
'''
m1d = [(l is not None) and (l[0] == 'R') for l in SampledMask.expand(self.str)]
return np.array(m1d)
def erode(self, N_term=True, C_term=True):
'''
Reduce non-receptor contigs by 1 residue from the N and/or C terminus.
'''
x = SampledMask.expand(self.str)
if N_term:
for i, l in enumerate(x):
if (l is not None) and (l[0] != 'R'):
x[i] = None
break
if C_term:
x = x[::-1]
for i, l in enumerate(x):
if (l is not None) and (l[0] != 'R'):
x[i] = None
break
x = x[::-1]
self.str = self.contract(x)
return
def len_contigs(self, include_receptor=False):
con_str = ','.join(self.get_contigs(include_receptor))
return len(SampledMask.expand(con_str))
def make_template_features(pdb, args, device, hal_2_ref_idx0=None, sm_loss=None):
'''
Inputs
----------
sm_loss: Instance of a contig.SampledMask object used for making the loss masks.
'''
PARAMS = {
"DMIN" : 2.0,
"DMAX" : 20.0,
"DBINS" : 36,
"ABINS" : 36,
}
if args.use_template:
B,T = 1,1 # batch, templates
# spoof reference features
xyz_t = torch.tensor(pdb['xyz'][:, :3][None, None]) # (batch,templ,nres,3,3)
t0d = torch.ones((1,1,3)) # (batch, templ, 3)
t2d_ref = xyz_to_t2d(xyz_t=xyz_t, t0d=t0d, params=PARAMS) # (B,T,L,L,...)
L_ref = t2d_ref.shape[2]
#t1d_ref = torch.ones(size=(B,T,L_ref,3), dtype=torch.float32, device=device)
a = 2 * torch.ones([B,T,L_ref], dtype=torch.float32, device=device)
b = 0 * torch.ones([B,T,L_ref], dtype=torch.float32, device=device)
c = 1 * torch.ones([B,T,L_ref], dtype=torch.float32, device=device)
t1d_ref = torch.stack([a,b,c], axis=-1)
# Get the mask_str for scattering template features
#1. Template mask = sampled mask
if (args.use_template.lower() == 't') or (args.use_template.lower() == 'true'):
sm_tmpl = sm_loss
#2. Template mask is a subset of the sampled mask
else:
subset_contigs = args.use_template
if args.receptor:
receptor_contig = sm_loss.get_receptor_contig()
subset_contigs = ','.join([subset_contigs, receptor_contig])
mask_str_tmpl = sm_loss.subset(subset_contigs)
sm_tmpl = SampledMask(mask_str=mask_str_tmpl, ref_pdb_idx=pdb['pdb_idx'])
# scatter template features
# make leading dims (L,(L),...)
t1d_ref = t1d_ref.permute(2,3,0,1) # (L, ..., B, T)
t2d_ref = t2d_ref.permute(2,3,4,0,1) # (L, L, ..., B, T)
t1d_tmpl = sm_tmpl.scatter_1d(t1d_ref.cpu().numpy())
t2d_tmpl = sm_tmpl.scatter_2d(t2d_ref.cpu().numpy())
# update t2d_tmpl with mask_con (could update with mask_cce instead?)
mask_con = sm_tmpl.get_mask_con(include_receptor=True)
t2d_tmpl = (t2d_tmpl.T * mask_con.T).T # trick to broadcast arrays if leading dimensions match
t1d_tmpl = torch.tensor(t1d_tmpl, device=device)
t2d_tmpl = torch.tensor(t2d_tmpl, device=device)
# Permute B and T dims back to front
t1d_tmpl = t1d_tmpl.permute(2,3,0,1)
t2d_tmpl = t2d_tmpl.permute(3,4,0,1,2)
# Make last 3 idx of last dim all 1 to mimick Ivan's template feature
t2d_tmpl[..., -3:] = 1.
idx = torch.tensor(sm_tmpl.idx_for_template(gap=200), device=device)[None]
net_kwargs = {
'idx': idx,
't1d': t1d_tmpl,
't2d': t2d_tmpl
}
elif args.template_pdbs is not None:
B,T = 1, len(args.template_pdbs) # batch, templates
# get xyz features of all templates
xyz_t = [torch.tensor(parse_pdb(f_pdb)['xyz'][:, :3]) for f_pdb in args.template_pdbs]
xyz_t = torch.stack(xyz_t, axis=0)[None] # (batch, template, nres, 3, 3)
t0d = torch.ones(B,T,3)
t2d_tmpl = xyz_to_t2d(xyz_t=xyz_t, t0d=t0d, params=PARAMS).to(device) # (B,T,L,L,...)
L_tmpl = t2d_tmpl.shape[2]
t1d_tmpl = torch.ones(size=(B,T,L_tmpl,3), dtype=torch.float32, device=device)
# spoof pdb idx
idx_tmpl = torch.range(0, L_tmpl-1, dtype=torch.long, device=device)[None]
# Net() kwargs
net_kwargs = {
'idx': idx_tmpl,
't1d': t1d_tmpl,
't2d': t2d_tmpl
}
else:
net_kwargs = {}
return net_kwargs
|