PROTEIN_GENERATOR / model /Attention_module.py
Jacob Gershon
new b
59a9ccf
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from opt_einsum import contract as einsum
from util_module import init_lecun_normal
from icecream import ic
class FeedForwardLayer(nn.Module):
def __init__(self, d_model, r_ff, p_drop=0.1):
super(FeedForwardLayer, self).__init__()
self.norm = nn.LayerNorm(d_model)
self.linear1 = nn.Linear(d_model, d_model*r_ff)
self.dropout = nn.Dropout(p_drop)
self.linear2 = nn.Linear(d_model*r_ff, d_model)
self.reset_parameter()
def reset_parameter(self):
# initialize linear layer right before ReLu: He initializer (kaiming normal)
nn.init.kaiming_normal_(self.linear1.weight, nonlinearity='relu')
nn.init.zeros_(self.linear1.bias)
# initialize linear layer right before residual connection: zero initialize
nn.init.zeros_(self.linear2.weight)
nn.init.zeros_(self.linear2.bias)
def forward(self, src):
src = self.norm(src)
src = self.linear2(self.dropout(F.relu_(self.linear1(src))))
return src
class Attention(nn.Module):
# calculate multi-head attention
def __init__(self, d_query, d_key, n_head, d_hidden, d_out, p_drop=0.1):
super(Attention, self).__init__()
self.h = n_head
self.dim = d_hidden
#
self.to_q = nn.Linear(d_query, n_head*d_hidden, bias=False)
self.to_k = nn.Linear(d_key, n_head*d_hidden, bias=False)
self.to_v = nn.Linear(d_key, n_head*d_hidden, bias=False)
#
self.to_out = nn.Linear(n_head*d_hidden, d_out)
self.scaling = 1/math.sqrt(d_hidden)
#
# initialize all parameters properly
self.reset_parameter()
def reset_parameter(self):
# query/key/value projection: Glorot uniform / Xavier uniform
nn.init.xavier_uniform_(self.to_q.weight)
nn.init.xavier_uniform_(self.to_k.weight)
nn.init.xavier_uniform_(self.to_v.weight)
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining
nn.init.zeros_(self.to_out.weight)
nn.init.zeros_(self.to_out.bias)
def forward(self, query, key, value):
B, Q = query.shape[:2]
B, K = key.shape[:2]
#
query = self.to_q(query).reshape(B, Q, self.h, self.dim)
key = self.to_k(key).reshape(B, K, self.h, self.dim)
value = self.to_v(value).reshape(B, K, self.h, self.dim)
#
query = query * self.scaling
attn = einsum('bqhd,bkhd->bhqk', query, key)
attn = F.softmax(attn, dim=-1)
#
out = einsum('bhqk,bkhd->bqhd', attn, value)
out = out.reshape(B, Q, self.h*self.dim)
#
out = self.to_out(out)
return out
class AttentionWithBias(nn.Module):
def __init__(self, d_in=256, d_bias=128, n_head=8, d_hidden=32):
super(AttentionWithBias, self).__init__()
self.norm_in = nn.LayerNorm(d_in)
self.norm_bias = nn.LayerNorm(d_bias)
#
self.to_q = nn.Linear(d_in, n_head*d_hidden, bias=False)
self.to_k = nn.Linear(d_in, n_head*d_hidden, bias=False)
self.to_v = nn.Linear(d_in, n_head*d_hidden, bias=False)
self.to_b = nn.Linear(d_bias, n_head, bias=False)
self.to_g = nn.Linear(d_in, n_head*d_hidden)
self.to_out = nn.Linear(n_head*d_hidden, d_in)
self.scaling = 1/math.sqrt(d_hidden)
self.h = n_head
self.dim = d_hidden
self.reset_parameter()
def reset_parameter(self):
# query/key/value projection: Glorot uniform / Xavier uniform
nn.init.xavier_uniform_(self.to_q.weight)
nn.init.xavier_uniform_(self.to_k.weight)
nn.init.xavier_uniform_(self.to_v.weight)
# bias: normal distribution
self.to_b = init_lecun_normal(self.to_b)
# gating: zero weights, one biases (mostly open gate at the begining)
nn.init.zeros_(self.to_g.weight)
nn.init.ones_(self.to_g.bias)
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining
nn.init.zeros_(self.to_out.weight)
nn.init.zeros_(self.to_out.bias)
def forward(self, x, bias):
B, L = x.shape[:2]
#
x = self.norm_in(x)
bias = self.norm_bias(bias)
#
query = self.to_q(x).reshape(B, L, self.h, self.dim)
key = self.to_k(x).reshape(B, L, self.h, self.dim)
value = self.to_v(x).reshape(B, L, self.h, self.dim)
bias = self.to_b(bias) # (B, L, L, h)
gate = torch.sigmoid(self.to_g(x))
#
key = key * self.scaling
attn = einsum('bqhd,bkhd->bqkh', query, key)
attn = attn + bias
attn = F.softmax(attn, dim=-2)
#
out = einsum('bqkh,bkhd->bqhd', attn, value).reshape(B, L, -1)
out = gate * out
#
out = self.to_out(out)
return out
# MSA Attention (row/column) from AlphaFold architecture
class SequenceWeight(nn.Module):
def __init__(self, d_msa, n_head, d_hidden, p_drop=0.1):
super(SequenceWeight, self).__init__()
self.h = n_head
self.dim = d_hidden
self.scale = 1.0 / math.sqrt(self.dim)
self.to_query = nn.Linear(d_msa, n_head*d_hidden)
self.to_key = nn.Linear(d_msa, n_head*d_hidden)
self.dropout = nn.Dropout(p_drop)
self.reset_parameter()
def reset_parameter(self):
# query/key/value projection: Glorot uniform / Xavier uniform
nn.init.xavier_uniform_(self.to_query.weight)
nn.init.xavier_uniform_(self.to_key.weight)
def forward(self, msa):
B, N, L = msa.shape[:3]
tar_seq = msa[:,0]
q = self.to_query(tar_seq).view(B, 1, L, self.h, self.dim)
k = self.to_key(msa).view(B, N, L, self.h, self.dim)
q = q * self.scale
attn = einsum('bqihd,bkihd->bkihq', q, k)
attn = F.softmax(attn, dim=1)
return self.dropout(attn)
class MSARowAttentionWithBias(nn.Module):
def __init__(self, d_msa=256, d_pair=128, n_head=8, d_hidden=32):
super(MSARowAttentionWithBias, self).__init__()
self.norm_msa = nn.LayerNorm(d_msa)
self.norm_pair = nn.LayerNorm(d_pair)
#
self.seq_weight = SequenceWeight(d_msa, n_head, d_hidden, p_drop=0.1)
self.to_q = nn.Linear(d_msa, n_head*d_hidden, bias=False)
self.to_k = nn.Linear(d_msa, n_head*d_hidden, bias=False)
self.to_v = nn.Linear(d_msa, n_head*d_hidden, bias=False)
self.to_b = nn.Linear(d_pair, n_head, bias=False)
self.to_g = nn.Linear(d_msa, n_head*d_hidden)
self.to_out = nn.Linear(n_head*d_hidden, d_msa)
self.scaling = 1/math.sqrt(d_hidden)
self.h = n_head
self.dim = d_hidden
self.reset_parameter()
def reset_parameter(self):
# query/key/value projection: Glorot uniform / Xavier uniform
nn.init.xavier_uniform_(self.to_q.weight)
nn.init.xavier_uniform_(self.to_k.weight)
nn.init.xavier_uniform_(self.to_v.weight)
# bias: normal distribution
self.to_b = init_lecun_normal(self.to_b)
# gating: zero weights, one biases (mostly open gate at the begining)
nn.init.zeros_(self.to_g.weight)
nn.init.ones_(self.to_g.bias)
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining
nn.init.zeros_(self.to_out.weight)
nn.init.zeros_(self.to_out.bias)
def forward(self, msa, pair): # TODO: make this as tied-attention
B, N, L = msa.shape[:3]
#
msa = self.norm_msa(msa)
pair = self.norm_pair(pair)
#
seq_weight = self.seq_weight(msa) # (B, N, L, h, 1)
query = self.to_q(msa).reshape(B, N, L, self.h, self.dim)
key = self.to_k(msa).reshape(B, N, L, self.h, self.dim)
value = self.to_v(msa).reshape(B, N, L, self.h, self.dim)
bias = self.to_b(pair) # (B, L, L, h)
gate = torch.sigmoid(self.to_g(msa))
#
query = query * seq_weight.expand(-1, -1, -1, -1, self.dim)
key = key * self.scaling
attn = einsum('bsqhd,bskhd->bqkh', query, key)
attn = attn + bias
attn = F.softmax(attn, dim=-2)
#
out = einsum('bqkh,bskhd->bsqhd', attn, value).reshape(B, N, L, -1)
out = gate * out
#
out = self.to_out(out)
return out
class MSAColAttention(nn.Module):
def __init__(self, d_msa=256, n_head=8, d_hidden=32):
super(MSAColAttention, self).__init__()
self.norm_msa = nn.LayerNorm(d_msa)
#
self.to_q = nn.Linear(d_msa, n_head*d_hidden, bias=False)
self.to_k = nn.Linear(d_msa, n_head*d_hidden, bias=False)
self.to_v = nn.Linear(d_msa, n_head*d_hidden, bias=False)
self.to_g = nn.Linear(d_msa, n_head*d_hidden)
self.to_out = nn.Linear(n_head*d_hidden, d_msa)
self.scaling = 1/math.sqrt(d_hidden)
self.h = n_head
self.dim = d_hidden
self.reset_parameter()
def reset_parameter(self):
# query/key/value projection: Glorot uniform / Xavier uniform
nn.init.xavier_uniform_(self.to_q.weight)
nn.init.xavier_uniform_(self.to_k.weight)
nn.init.xavier_uniform_(self.to_v.weight)
# gating: zero weights, one biases (mostly open gate at the begining)
nn.init.zeros_(self.to_g.weight)
nn.init.ones_(self.to_g.bias)
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining
nn.init.zeros_(self.to_out.weight)
nn.init.zeros_(self.to_out.bias)
def forward(self, msa):
B, N, L = msa.shape[:3]
#
msa = self.norm_msa(msa)
#
query = self.to_q(msa).reshape(B, N, L, self.h, self.dim)
key = self.to_k(msa).reshape(B, N, L, self.h, self.dim)
value = self.to_v(msa).reshape(B, N, L, self.h, self.dim)
gate = torch.sigmoid(self.to_g(msa))
#
query = query * self.scaling
attn = einsum('bqihd,bkihd->bihqk', query, key)
attn = F.softmax(attn, dim=-1)
#
out = einsum('bihqk,bkihd->bqihd', attn, value).reshape(B, N, L, -1)
out = gate * out
#
out = self.to_out(out)
return out
class MSAColGlobalAttention(nn.Module):
def __init__(self, d_msa=64, n_head=8, d_hidden=8):
super(MSAColGlobalAttention, self).__init__()
self.norm_msa = nn.LayerNorm(d_msa)
#
self.to_q = nn.Linear(d_msa, n_head*d_hidden, bias=False)
self.to_k = nn.Linear(d_msa, d_hidden, bias=False)
self.to_v = nn.Linear(d_msa, d_hidden, bias=False)
self.to_g = nn.Linear(d_msa, n_head*d_hidden)
self.to_out = nn.Linear(n_head*d_hidden, d_msa)
self.scaling = 1/math.sqrt(d_hidden)
self.h = n_head
self.dim = d_hidden
self.reset_parameter()
def reset_parameter(self):
# query/key/value projection: Glorot uniform / Xavier uniform
nn.init.xavier_uniform_(self.to_q.weight)
nn.init.xavier_uniform_(self.to_k.weight)
nn.init.xavier_uniform_(self.to_v.weight)
# gating: zero weights, one biases (mostly open gate at the begining)
nn.init.zeros_(self.to_g.weight)
nn.init.ones_(self.to_g.bias)
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining
nn.init.zeros_(self.to_out.weight)
nn.init.zeros_(self.to_out.bias)
def forward(self, msa):
B, N, L = msa.shape[:3]
#
msa = self.norm_msa(msa)
#
query = self.to_q(msa).reshape(B, N, L, self.h, self.dim)
query = query.mean(dim=1) # (B, L, h, dim)
key = self.to_k(msa) # (B, N, L, dim)
value = self.to_v(msa) # (B, N, L, dim)
gate = torch.sigmoid(self.to_g(msa)) # (B, N, L, h*dim)
#
query = query * self.scaling
attn = einsum('bihd,bkid->bihk', query, key) # (B, L, h, N)
attn = F.softmax(attn, dim=-1)
#
out = einsum('bihk,bkid->bihd', attn, value).reshape(B, 1, L, -1) # (B, 1, L, h*dim)
out = gate * out # (B, N, L, h*dim)
#
out = self.to_out(out)
return out
# Instead of triangle attention, use Tied axail attention with bias from coordinates..?
class BiasedAxialAttention(nn.Module):
def __init__(self, d_pair, d_bias, n_head, d_hidden, p_drop=0.1, is_row=True):
super(BiasedAxialAttention, self).__init__()
#
self.is_row = is_row
self.norm_pair = nn.LayerNorm(d_pair)
self.norm_bias = nn.LayerNorm(d_bias)
self.to_q = nn.Linear(d_pair, n_head*d_hidden, bias=False)
self.to_k = nn.Linear(d_pair, n_head*d_hidden, bias=False)
self.to_v = nn.Linear(d_pair, n_head*d_hidden, bias=False)
self.to_b = nn.Linear(d_bias, n_head, bias=False)
self.to_g = nn.Linear(d_pair, n_head*d_hidden)
self.to_out = nn.Linear(n_head*d_hidden, d_pair)
self.scaling = 1/math.sqrt(d_hidden)
self.h = n_head
self.dim = d_hidden
# initialize all parameters properly
self.reset_parameter()
def reset_parameter(self):
# query/key/value projection: Glorot uniform / Xavier uniform
nn.init.xavier_uniform_(self.to_q.weight)
nn.init.xavier_uniform_(self.to_k.weight)
nn.init.xavier_uniform_(self.to_v.weight)
# bias: normal distribution
self.to_b = init_lecun_normal(self.to_b)
# gating: zero weights, one biases (mostly open gate at the begining)
nn.init.zeros_(self.to_g.weight)
nn.init.ones_(self.to_g.bias)
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining
nn.init.zeros_(self.to_out.weight)
nn.init.zeros_(self.to_out.bias)
def forward(self, pair, bias, same_chain = None):
# pair: (B, L, L, d_pair)
B, L = pair.shape[:2]
if self.is_row:
pair = pair.permute(0,2,1,3)
bias = bias.permute(0,2,1,3)
pair = self.norm_pair(pair)
bias = self.norm_bias(bias)
query = self.to_q(pair).reshape(B, L, L, self.h, self.dim)
key = self.to_k(pair).reshape(B, L, L, self.h, self.dim)
value = self.to_v(pair).reshape(B, L, L, self.h, self.dim)
bias = self.to_b(bias) # (B, L, L, h)
gate = torch.sigmoid(self.to_g(pair)) # (B, L, L, h*dim)
query = query * self.scaling
key = key / math.sqrt(L) # normalize for tied attention
attn = einsum('bnihk,bnjhk->bijh', query, key) # tied attention
attn = attn + bias # apply bias
attn = F.softmax(attn, dim=-2) # (B, L, L, h)
if same_chain is not None:
ic(same_chain)
ic(attn)
ic(attn[~same_chain])
attn[~same_chain] *= 1.1
out = einsum('bijh,bkjhd->bikhd', attn, value).reshape(B, L, L, -1)
out = gate * out
out = self.to_out(out)
if self.is_row:
out = out.permute(0,2,1,3)
return out