Jacob Gershon
new b
59a9ccf
import sys
import numpy as np
import torch
import scipy.sparse
from chemical import *
from scoring import *
def th_ang_v(ab,bc,eps:float=1e-8):
def th_norm(x,eps:float=1e-8):
return x.square().sum(-1,keepdim=True).add(eps).sqrt()
def th_N(x,alpha:float=0):
return x/th_norm(x).add(alpha)
ab, bc = th_N(ab),th_N(bc)
cos_angle = torch.clamp( (ab*bc).sum(-1), -1, 1)
sin_angle = torch.sqrt(1-cos_angle.square() + eps)
dih = torch.stack((cos_angle,sin_angle),-1)
return dih
def th_dih_v(ab,bc,cd):
def th_cross(a,b):
a,b = torch.broadcast_tensors(a,b)
return torch.cross(a,b, dim=-1)
def th_norm(x,eps:float=1e-8):
return x.square().sum(-1,keepdim=True).add(eps).sqrt()
def th_N(x,alpha:float=0):
return x/th_norm(x).add(alpha)
ab, bc, cd = th_N(ab),th_N(bc),th_N(cd)
n1 = th_N( th_cross(ab,bc) )
n2 = th_N( th_cross(bc,cd) )
sin_angle = (th_cross(n1,bc)*n2).sum(-1)
cos_angle = (n1*n2).sum(-1)
dih = torch.stack((cos_angle,sin_angle),-1)
return dih
def th_dih(a,b,c,d):
return th_dih_v(a-b,b-c,c-d)
# More complicated version splits error in CA-N and CA-C (giving more accurate CB position)
# It returns the rigid transformation from local frame to global frame
def rigid_from_3_points(N, Ca, C, non_ideal=False, eps=1e-8):
#N, Ca, C - [B,L, 3]
#R - [B,L, 3, 3], det(R)=1, inv(R) = R.T, R is a rotation matrix
B,L = N.shape[:2]
v1 = C-Ca
v2 = N-Ca
e1 = v1/(torch.norm(v1, dim=-1, keepdim=True)+eps)
u2 = v2-(torch.einsum('bli, bli -> bl', e1, v2)[...,None]*e1)
e2 = u2/(torch.norm(u2, dim=-1, keepdim=True)+eps)
e3 = torch.cross(e1, e2, dim=-1)
R = torch.cat([e1[...,None], e2[...,None], e3[...,None]], axis=-1) #[B,L,3,3] - rotation matrix
if non_ideal:
v2 = v2/(torch.norm(v2, dim=-1, keepdim=True)+eps)
cosref = torch.sum(e1*v2, dim=-1) # cosine of current N-CA-C bond angle
costgt = cos_ideal_NCAC.item()
cos2del = torch.clamp( cosref*costgt + torch.sqrt((1-cosref*cosref)*(1-costgt*costgt)+eps), min=-1.0, max=1.0 )
cosdel = torch.sqrt(0.5*(1+cos2del)+eps)
sindel = torch.sign(costgt-cosref) * torch.sqrt(1-0.5*(1+cos2del)+eps)
Rp = torch.eye(3, device=N.device).repeat(B,L,1,1)
Rp[:,:,0,0] = cosdel
Rp[:,:,0,1] = -sindel
Rp[:,:,1,0] = sindel
Rp[:,:,1,1] = cosdel
R = torch.einsum('blij,bljk->blik', R,Rp)
return R, Ca
def get_tor_mask(seq, torsion_indices, mask_in=None):
B,L = seq.shape[:2]
tors_mask = torch.ones((B,L,10), dtype=torch.bool, device=seq.device)
tors_mask[...,3:7] = torsion_indices[seq,:,-1] > 0
tors_mask[:,0,1] = False
tors_mask[:,-1,0] = False
# mask for additional angles
tors_mask[:,:,7] = seq!=aa2num['GLY']
tors_mask[:,:,8] = seq!=aa2num['GLY']
tors_mask[:,:,9] = torch.logical_and( seq!=aa2num['GLY'], seq!=aa2num['ALA'] )
tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['UNK'] )
tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['MAS'] )
if mask_in != None:
# mask for missing atoms
# chis
ti0 = torch.gather(mask_in,2,torsion_indices[seq,:,0])
ti1 = torch.gather(mask_in,2,torsion_indices[seq,:,1])
ti2 = torch.gather(mask_in,2,torsion_indices[seq,:,2])
ti3 = torch.gather(mask_in,2,torsion_indices[seq,:,3])
is_valid = torch.stack((ti0, ti1, ti2, ti3), dim=-2).all(dim=-1)
tors_mask[...,3:7] = torch.logical_and(tors_mask[...,3:7], is_valid)
tors_mask[:,:,7] = torch.logical_and(tors_mask[:,:,7], mask_in[:,:,4]) # CB exist?
tors_mask[:,:,8] = torch.logical_and(tors_mask[:,:,8], mask_in[:,:,4]) # CB exist?
tors_mask[:,:,9] = torch.logical_and(tors_mask[:,:,9], mask_in[:,:,5]) # XG exist?
return tors_mask
def get_torsions(xyz_in, seq, torsion_indices, torsion_can_flip, ref_angles, mask_in=None):
B,L = xyz_in.shape[:2]
tors_mask = get_tor_mask(seq, torsion_indices, mask_in)
# torsions to restrain to 0 or 180degree
tors_planar = torch.zeros((B, L, 10), dtype=torch.bool, device=xyz_in.device)
tors_planar[:,:,5] = seq == aa2num['TYR'] # TYR chi 3 should be planar
# idealize given xyz coordinates before computing torsion angles
xyz = xyz_in.clone()
Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:])
Nideal = torch.tensor([-0.5272, 1.3593, 0.000], device=xyz_in.device)
Cideal = torch.tensor([1.5233, 0.000, 0.000], device=xyz_in.device)
xyz[...,0,:] = torch.einsum('brij,j->bri', Rs, Nideal) + Ts
xyz[...,2,:] = torch.einsum('brij,j->bri', Rs, Cideal) + Ts
torsions = torch.zeros( (B,L,10,2), device=xyz.device )
# avoid undefined angles for H generation
torsions[:,0,1,0] = 1.0
torsions[:,-1,0,0] = 1.0
# omega
torsions[:,:-1,0,:] = th_dih(xyz[:,:-1,1,:],xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:])
# phi
torsions[:,1:,1,:] = th_dih(xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:],xyz[:,1:,2,:])
# psi
torsions[:,:,2,:] = -1 * th_dih(xyz[:,:,0,:],xyz[:,:,1,:],xyz[:,:,2,:],xyz[:,:,3,:])
# chis
ti0 = torch.gather(xyz,2,torsion_indices[seq,:,0,None].repeat(1,1,1,3))
ti1 = torch.gather(xyz,2,torsion_indices[seq,:,1,None].repeat(1,1,1,3))
ti2 = torch.gather(xyz,2,torsion_indices[seq,:,2,None].repeat(1,1,1,3))
ti3 = torch.gather(xyz,2,torsion_indices[seq,:,3,None].repeat(1,1,1,3))
torsions[:,:,3:7,:] = th_dih(ti0,ti1,ti2,ti3)
# CB bend
NC = 0.5*( xyz[:,:,0,:3] + xyz[:,:,2,:3] )
CA = xyz[:,:,1,:3]
CB = xyz[:,:,4,:3]
t = th_ang_v(CB-CA,NC-CA)
t0 = ref_angles[seq][...,0,:]
torsions[:,:,7,:] = torch.stack(
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]),
dim=-1 )
# CB twist
NCCA = NC-CA
NCp = xyz[:,:,2,:3] - xyz[:,:,0,:3]
NCpp = NCp - torch.sum(NCp*NCCA, dim=-1, keepdim=True)/ torch.sum(NCCA*NCCA, dim=-1, keepdim=True) * NCCA
t = th_ang_v(CB-CA,NCpp)
t0 = ref_angles[seq][...,1,:]
torsions[:,:,8,:] = torch.stack(
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]),
dim=-1 )
# CG bend
CG = xyz[:,:,5,:3]
t = th_ang_v(CG-CB,CA-CB)
t0 = ref_angles[seq][...,2,:]
torsions[:,:,9,:] = torch.stack(
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]),
dim=-1 )
mask0 = torch.isnan(torsions[...,0]).nonzero()
mask1 = torch.isnan(torsions[...,1]).nonzero()
torsions[mask0[:,0],mask0[:,1],mask0[:,2],0] = 1.0
torsions[mask1[:,0],mask1[:,1],mask1[:,2],1] = 0.0
# alt chis
torsions_alt = torsions.clone()
torsions_alt[torsion_can_flip[seq,:]] *= -1
return torsions, torsions_alt, tors_mask, tors_planar
def get_tips(xyz, seq):
B,L = xyz.shape[:2]
xyz_tips = torch.gather(xyz, 2, tip_indices.to(xyz.device)[seq][:,:,None,None].expand(-1,-1,-1,3)).reshape(B, L, 3)
mask = ~(torch.isnan(xyz_tips[:,:,0]))
if torch.isnan(xyz_tips).any(): # replace NaN tip atom with virtual Cb atom
# three anchor atoms
N = xyz[:,:,0]
Ca = xyz[:,:,1]
C = xyz[:,:,2]
# recreate Cb given N,Ca,C
b = Ca - N
c = C - Ca
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca
xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips)
return xyz_tips, mask
# process ideal frames
def make_frame(X, Y):
Xn = X / torch.linalg.norm(X)
Y = Y - torch.dot(Y, Xn) * Xn
Yn = Y / torch.linalg.norm(Y)
Z = torch.cross(Xn,Yn)
Zn = Z / torch.linalg.norm(Z)
return torch.stack((Xn,Yn,Zn), dim=-1)
def cross_product_matrix(u):
B, L = u.shape[:2]
matrix = torch.zeros((B, L, 3, 3), device=u.device)
matrix[:,:,0,1] = -u[...,2]
matrix[:,:,0,2] = u[...,1]
matrix[:,:,1,0] = u[...,2]
matrix[:,:,1,2] = -u[...,0]
matrix[:,:,2,0] = -u[...,1]
matrix[:,:,2,1] = u[...,0]
return matrix
# writepdb
def writepdb(filename, atoms, seq, idx_pdb=None, bfacts=None):
f = open(filename,"w")
ctr = 1
scpu = seq.cpu().squeeze()
atomscpu = atoms.cpu().squeeze()
if bfacts is None:
bfacts = torch.zeros(atomscpu.shape[0])
if idx_pdb is None:
idx_pdb = 1 + torch.arange(atomscpu.shape[0])
Bfacts = torch.clamp( bfacts.cpu(), 0, 1)
for i,s in enumerate(scpu):
if (len(atomscpu.shape)==2):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, " CA ", num2aa[s],
"A", idx_pdb[i], atomscpu[i,0], atomscpu[i,1], atomscpu[i,2],
1.0, Bfacts[i] ) )
ctr += 1
elif atomscpu.shape[1]==3:
for j,atm_j in enumerate([" N "," CA "," C "]):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, atm_j, num2aa[s],
"A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2],
1.0, Bfacts[i] ) )
ctr += 1
else:
natoms = atomscpu.shape[1]
if (natoms!=14 and natoms!=27):
print ('bad size!', atoms.shape)
assert(False)
atms = aa2long[s]
# his prot hack
if (s==8 and torch.linalg.norm( atomscpu[i,9,:]-atomscpu[i,5,:] ) < 1.7):
atms = (
" N "," CA "," C "," O "," CB "," CG "," NE2"," CD2"," CE1"," ND1",
None, None, None, None," H "," HA ","1HB ","2HB "," HD2"," HE1",
" HD1", None, None, None, None, None, None) # his_d
for j,atm_j in enumerate(atms):
if (j<natoms and atm_j is not None): # and not torch.isnan(atomscpu[i,j,:]).any()):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, atm_j, num2aa[s],
"A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2],
1.0, Bfacts[i] ) )
ctr += 1
# resolve tip atom indices
tip_indices = torch.full((22,), 0)
for i in range(22):
tip_atm = aa2tip[i]
atm_long = aa2long[i]
tip_indices[i] = atm_long.index(tip_atm)
# resolve torsion indices
torsion_indices = torch.full((22,4,4),0)
torsion_can_flip = torch.full((22,10),False,dtype=torch.bool)
for i in range(22):
i_l, i_a = aa2long[i], aa2longalt[i]
for j in range(4):
if torsions[i][j] is None:
continue
for k in range(4):
a = torsions[i][j][k]
torsion_indices[i,j,k] = i_l.index(a)
if (i_l.index(a) != i_a.index(a)):
torsion_can_flip[i,3+j] = True ##bb tors never flip
# HIS is a special case
torsion_can_flip[8,4]=False
# build the mapping from atoms in the full rep (Nx27) to the "alternate" rep
allatom_mask = torch.zeros((22,27), dtype=torch.bool)
long2alt = torch.zeros((22,27), dtype=torch.long)
for i in range(22):
i_l, i_lalt = aa2long[i], aa2longalt[i]
for j,a in enumerate(i_l):
if (a is None):
long2alt[i,j] = j
else:
long2alt[i,j] = i_lalt.index(a)
allatom_mask[i,j] = True
# bond graph traversal
num_bonds = torch.zeros((22,27,27), dtype=torch.long)
for i in range(22):
num_bonds_i = np.zeros((27,27))
for (bnamei,bnamej) in aabonds[i]:
bi,bj = aa2long[i].index(bnamei),aa2long[i].index(bnamej)
num_bonds_i[bi,bj] = 1
num_bonds_i = scipy.sparse.csgraph.shortest_path (num_bonds_i,directed=False)
num_bonds_i[num_bonds_i>=4] = 4
num_bonds[i,...] = torch.tensor(num_bonds_i)
# LJ/LK scoring parameters
ljlk_parameters = torch.zeros((22,27,5), dtype=torch.float)
lj_correction_parameters = torch.zeros((22,27,4), dtype=bool) # donor/acceptor/hpol/disulf
for i in range(22):
for j,a in enumerate(aa2type[i]):
if (a is not None):
ljlk_parameters[i,j,:] = torch.tensor( type2ljlk[a] )
lj_correction_parameters[i,j,0] = (type2hb[a]==HbAtom.DO)+(type2hb[a]==HbAtom.DA)
lj_correction_parameters[i,j,1] = (type2hb[a]==HbAtom.AC)+(type2hb[a]==HbAtom.DA)
lj_correction_parameters[i,j,2] = (type2hb[a]==HbAtom.HP)
lj_correction_parameters[i,j,3] = (a=="SH1" or a=="HS")
# hbond scoring parameters
def donorHs(D,bonds,atoms):
dHs = []
for (i,j) in bonds:
if (i==D):
idx_j = atoms.index(j)
if (idx_j>=14): # if atom j is a hydrogen
dHs.append(idx_j)
if (j==D):
idx_i = atoms.index(i)
if (idx_i>=14): # if atom j is a hydrogen
dHs.append(idx_i)
assert (len(dHs)>0)
return dHs
def acceptorBB0(A,hyb,bonds,atoms):
if (hyb == HbHybType.SP2):
for (i,j) in bonds:
if (i==A):
B = atoms.index(j)
if (B<14):
break
if (j==A):
B = atoms.index(i)
if (B<14):
break
for (i,j) in bonds:
if (i==atoms[B]):
B0 = atoms.index(j)
if (B0<14):
break
if (j==atoms[B]):
B0 = atoms.index(i)
if (B0<14):
break
elif (hyb == HbHybType.SP3 or hyb == HbHybType.RING):
for (i,j) in bonds:
if (i==A):
B = atoms.index(j)
if (B<14):
break
if (j==A):
B = atoms.index(i)
if (B<14):
break
for (i,j) in bonds:
if (i==A and j!=atoms[B]):
B0 = atoms.index(j)
break
if (j==A and i!=atoms[B]):
B0 = atoms.index(i)
break
return B,B0
hbtypes = torch.full((22,27,3),-1, dtype=torch.long) # (donortype, acceptortype, acchybtype)
hbbaseatoms = torch.full((22,27,2),-1, dtype=torch.long) # (B,B0) for acc; (D,-1) for don
hbpolys = torch.zeros((HbDonType.NTYPES,HbAccType.NTYPES,3,15)) # weight,xmin,xmax,ymin,ymax,c9,...,c0
for i in range(22):
for j,a in enumerate(aa2type[i]):
if (a in type2dontype):
j_hs = donorHs(aa2long[i][j],aabonds[i],aa2long[i])
for j_h in j_hs:
hbtypes[i,j_h,0] = type2dontype[a]
hbbaseatoms[i,j_h,0] = j
if (a in type2acctype):
j_b, j_b0 = acceptorBB0(aa2long[i][j],type2hybtype[a],aabonds[i],aa2long[i])
hbtypes[i,j,1] = type2acctype[a]
hbtypes[i,j,2] = type2hybtype[a]
hbbaseatoms[i,j,0] = j_b
hbbaseatoms[i,j,1] = j_b0
for i in range(HbDonType.NTYPES):
for j in range(HbAccType.NTYPES):
weight = dontype2wt[i]*acctype2wt[j]
pdist,pbah,pahd = hbtypepair2poly[(i,j)]
xrange,yrange,coeffs = hbpolytype2coeffs[pdist]
hbpolys[i,j,0,0] = weight
hbpolys[i,j,0,1:3] = torch.tensor(xrange)
hbpolys[i,j,0,3:5] = torch.tensor(yrange)
hbpolys[i,j,0,5:] = torch.tensor(coeffs)
xrange,yrange,coeffs = hbpolytype2coeffs[pahd]
hbpolys[i,j,1,0] = weight
hbpolys[i,j,1,1:3] = torch.tensor(xrange)
hbpolys[i,j,1,3:5] = torch.tensor(yrange)
hbpolys[i,j,1,5:] = torch.tensor(coeffs)
xrange,yrange,coeffs = hbpolytype2coeffs[pbah]
hbpolys[i,j,2,0] = weight
hbpolys[i,j,2,1:3] = torch.tensor(xrange)
hbpolys[i,j,2,3:5] = torch.tensor(yrange)
hbpolys[i,j,2,5:] = torch.tensor(coeffs)
# kinematic parameters
base_indices = torch.full((22,27),0, dtype=torch.long)
xyzs_in_base_frame = torch.ones((22,27,4))
RTs_by_torsion = torch.eye(4).repeat(22,7,1,1)
reference_angles = torch.ones((22,3,2))
for i in range(22):
i_l = aa2long[i]
for name, base, coords in ideal_coords[i]:
idx = i_l.index(name)
base_indices[i,idx] = base
xyzs_in_base_frame[i,idx,:3] = torch.tensor(coords)
# omega frame
RTs_by_torsion[i,0,:3,:3] = torch.eye(3)
RTs_by_torsion[i,0,:3,3] = torch.zeros(3)
# phi frame
RTs_by_torsion[i,1,:3,:3] = make_frame(
xyzs_in_base_frame[i,0,:3] - xyzs_in_base_frame[i,1,:3],
torch.tensor([1.,0.,0.])
)
RTs_by_torsion[i,1,:3,3] = xyzs_in_base_frame[i,0,:3]
# psi frame
RTs_by_torsion[i,2,:3,:3] = make_frame(
xyzs_in_base_frame[i,2,:3] - xyzs_in_base_frame[i,1,:3],
xyzs_in_base_frame[i,1,:3] - xyzs_in_base_frame[i,0,:3]
)
RTs_by_torsion[i,2,:3,3] = xyzs_in_base_frame[i,2,:3]
# chi1 frame
if torsions[i][0] is not None:
a0,a1,a2 = torsion_indices[i,0,0:3]
RTs_by_torsion[i,3,:3,:3] = make_frame(
xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3],
xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3],
)
RTs_by_torsion[i,3,:3,3] = xyzs_in_base_frame[i,a2,:3]
# chi2~4 frame
for j in range(1,4):
if torsions[i][j] is not None:
a2 = torsion_indices[i,j,2]
if ((i==18 and j==2) or (i==8 and j==2)): # TYR CZ-OH & HIS CE1-HE1 a special case
a0,a1 = torsion_indices[i,j,0:2]
RTs_by_torsion[i,3+j,:3,:3] = make_frame(
xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3],
xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3] )
else:
RTs_by_torsion[i,3+j,:3,:3] = make_frame(
xyzs_in_base_frame[i,a2,:3],
torch.tensor([-1.,0.,0.]), )
RTs_by_torsion[i,3+j,:3,3] = xyzs_in_base_frame[i,a2,:3]
# CB/CG angles
NCr = 0.5*(xyzs_in_base_frame[i,0,:3]+xyzs_in_base_frame[i,2,:3])
CAr = xyzs_in_base_frame[i,1,:3]
CBr = xyzs_in_base_frame[i,4,:3]
CGr = xyzs_in_base_frame[i,5,:3]
reference_angles[i,0,:]=th_ang_v(CBr-CAr,NCr-CAr)
NCp = xyzs_in_base_frame[i,2,:3]-xyzs_in_base_frame[i,0,:3]
NCpp = NCp - torch.dot(NCp,NCr)/ torch.dot(NCr,NCr) * NCr
reference_angles[i,1,:]=th_ang_v(CBr-CAr,NCpp)
reference_angles[i,2,:]=th_ang_v(CGr,torch.tensor([-1.,0.,0.]))
def get_rmsd(a, b, eps=1e-6):
'''
align crds b to a : always use all alphas
expexted tensor of shape (L,3)
jake's torch adapted version
'''
assert a.shape == b.shape, 'make sure tensors are the same size'
L = a.shape[0]
assert a.shape == torch.Size([L,3]), 'make sure tensors are in format [L,3]'
# center to CA centroid
a = a - a.mean(dim=0)
b = b - b.mean(dim=0)
# Computation of the covariance matrix
C = torch.einsum('kj,ji->ki', torch.transpose(b.type(torch.float32),0,1), a.type(torch.float32))
# Compute optimal rotation matrix using SVD
V, S, W = torch.linalg.svd(C)
# get sign to ensure right-handedness
d = torch.ones([3,3])
d[:,-1] = torch.sign(torch.linalg.det(V)*torch.linalg.det(W))
# Rotation matrix U
U = torch.einsum('kj,ji->ki',(d*V),W)
# Rotate xyz_hal
rP = torch.einsum('kj,ji->ki',b.type(torch.float32),U.type(torch.float32))
L = rP.shape[0]
rmsd = torch.sqrt(torch.sum((rP-a)*(rP-a), axis=(0,1)) / L + eps)
return rmsd, U