diff --git a/ChartMimic/dataset/ori_500/density_2.png b/ChartMimic/dataset/ori_500/density_2.png new file mode 100644 index 0000000000000000000000000000000000000000..dac9b0754b1755d25ff6e166c343f2bd7ef6d533 Binary files /dev/null and b/ChartMimic/dataset/ori_500/density_2.png differ diff --git a/ChartMimic/dataset/ori_500/density_2.py b/ChartMimic/dataset/ori_500/density_2.py new file mode 100644 index 0000000000000000000000000000000000000000..6d670c27feadfba9fc603b65958ae2e1069b4160 --- /dev/null +++ b/ChartMimic/dataset/ori_500/density_2.py @@ -0,0 +1,48 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Create some data +y = np.linspace(0, 20, 100) +x1 = np.exp(-0.5 * (y - 5) ** 2) +x2 = 0.75 * np.exp(-0.2 * (y - 8) ** 2) + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Create the figure and axis +fig, ax = plt.subplots(figsize=(8, 4)) # Adjusted to match the dimensions in pixels + +# Plot the data +# ax.fill_between(x1, y, color="gray", edgecolor="#929292" ,alpha=0.5) +ax.fill_between( + x2, y, color="pink", edgecolor="#be6373", alpha=0.5 +) # Adjusted to taper off the pink area + +# Add the dashed vertical line at the peak of the gray area +# Add the red horizontal line at the bottom +# ax.axhline(0, color='red', linewidth=2) + +# Customize the plot to match the picture +ax.spines["top"].set_visible(False) +ax.spines["right"].set_visible(False) +ax.spines["left"].set_visible(True) +ax.spines["bottom"].set_visible(False) +ax.tick_params(left=False, labelleft=False, bottom=False, labelbottom=False) + +ax.set_ylim(1, 15) + +# =================== +# Part 4: Saving Output +# =================== +# Displaying the plot with tight layout to minimize white space +plt.tight_layout() +plt.savefig("density_2.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/density_3.png b/ChartMimic/dataset/ori_500/density_3.png new file mode 100644 index 0000000000000000000000000000000000000000..7b40a4490184bccbf37e75959a55f93258eb6623 Binary files /dev/null and b/ChartMimic/dataset/ori_500/density_3.png differ diff --git a/ChartMimic/dataset/ori_500/density_3.py b/ChartMimic/dataset/ori_500/density_3.py new file mode 100644 index 0000000000000000000000000000000000000000..86cb52aa5887d0fc6a53fa07b40af4f37866a500 --- /dev/null +++ b/ChartMimic/dataset/ori_500/density_3.py @@ -0,0 +1,61 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + +from scipy.stats import gaussian_kde + +# =================== +# Part 2: Data Preparation +# =================== +# Generate a bimodal distribution for the data +data1 = np.random.normal(loc=-0.5, scale=0.2, size=500) +data2 = np.random.normal(loc=0.5, scale=0.2, size=500) +data = np.concatenate([data1, data2]) +xs = np.linspace(-1.5, 1.5, 200) + +# Axes Limits and Labels +xticks_values = [-1, -0.5, 0, 0.5, 1] +xticklabels = ["-1.0", "-0.5", "0.0", "0.5", "1.0"] +yticks_values = [0, 0.2, 0.4, 0.6, 0.8, 1.0] +yticklabels = ["0.0", "0.2", "0.4", "0.6", "0.8", "1.0"] +xlim_values = [-1.5, 1.5] +ylim_values = [0, 1.2] +title = "KDE Plot of Spearman Coefficient Distribution" +xlabel_value = "Spearman Coefficient" +ylabel_value = "Density" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Set the figure size to match the original image's dimensions +fig, ax = plt.subplots(figsize=(8, 4)) + +# Create the KDE plot with adjusted x-axis range +density = gaussian_kde(data) +density.covariance_factor = lambda: 0.5 +density._compute_covariance() +plt.fill_between(xs, density(xs), color="#d1e4e5", edgecolor="teal") + +ax.set_xticks(xticks_values) +ax.set_xticklabels(xticklabels) + +ax.set_yticks(yticks_values) +ax.set_yticklabels(yticklabels) + +plt.xlim(xlim_values) +plt.ylim(ylim_values) +# Set the title and labels +plt.title(title) +plt.xlabel(xlabel_value) +plt.ylabel(ylabel_value) + +# =================== +# Part 4: Saving Output +# =================== +# Displaying the plot with tight layout to minimize white space +plt.tight_layout() +plt.savefig("density_3.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/density_5.png b/ChartMimic/dataset/ori_500/density_5.png new file mode 100644 index 0000000000000000000000000000000000000000..162c68cfbbd4c425e509d72c72794dd621e92e7a Binary files /dev/null and b/ChartMimic/dataset/ori_500/density_5.png differ diff --git a/ChartMimic/dataset/ori_500/density_5.py b/ChartMimic/dataset/ori_500/density_5.py new file mode 100644 index 0000000000000000000000000000000000000000..3a6f9e77c21cb0c6bd02bfaff49c09ae3ef26c9b --- /dev/null +++ b/ChartMimic/dataset/ori_500/density_5.py @@ -0,0 +1,53 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + +from scipy.stats import gaussian_kde + +# =================== +# Part 2: Data Preparation +# =================== +# Sample data +data1 = np.random.normal(loc=8, scale=0.8, size=1000) +data2 = np.random.normal(loc=12, scale=0.8, size=1000) + +# Compute density for each dataset +density1 = gaussian_kde(data1) +density2 = gaussian_kde(data2) +xs = np.linspace(5, 15, 300) +ys1 = density1(xs) +ys2 = density2(xs) +labels = ["Gucci", "Chanel"] +xlabel = "Density" +ylabel = "Value" +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Create the figure and axis +fig, ax = plt.subplots(figsize=(9, 6)) + +# Fill between x for density regions +plt.fill_betweenx(xs, ys1, color="blue", alpha=0.2, label=labels[0]) +plt.fill_betweenx(xs, ys2, color="green", alpha=0.2, label=labels[1]) + +# Set labels and title (if any) +ax.set_ylim(5, 15) +ax.set_xlabel(xlabel) +ax.set_ylabel(ylabel) + +# Show grid +plt.grid(True, linestyle="--") + +# Add legend +plt.legend() + +# =================== +# Part 4: Saving Output +# =================== +# Displaying the plot with tight layout to minimize white space +plt.tight_layout() +plt.savefig("density_5.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_10.png b/ChartMimic/dataset/ori_500/errorbar_10.png new file mode 100644 index 0000000000000000000000000000000000000000..6e9de742fc63bdb6c0d3f5f9b47111b1e26ebccc Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_10.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_10.py b/ChartMimic/dataset/ori_500/errorbar_10.py new file mode 100644 index 0000000000000000000000000000000000000000..159ca0fefae6f84e4a0dc5feb0a367b10cf68530 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_10.py @@ -0,0 +1,87 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Data +number_of_experts = [1, 2, 3, 4] +baseline = [6] * len(number_of_experts) +softmoe_unchanged = [5.8, 6.2, 7.5, 6.4] +softmoe_div_numexperts = [5.7, 6.1, 6.9, 6.2] +errors = [0.2, 0.15, 0.1, 0.05] + +# Labels and Plot Types +label1 = "SoftMoE (unchanged)" +label2 = "SoftMoE (÷ NumExperts)" +label3 = "Baseline" + +# Axes Limits and Labels +xlabel_value = "Number of experts" +ylabel_value = "IQM Human Normalized Score" +title = "Expert dimension" +xticklabels = ["1", "2", "4", "8"] +ylim_values = [5, 8] +yticks_values = np.arange(5, 8, 1) +legend_title = "Expert dimension" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Plotting +fig, ax = plt.subplots(figsize=(8, 6)) # Adjusted for the given dimensions +bar_width = 0.4 +opacity = 0.8 + +bar1 = ax.bar( + np.array(number_of_experts) - bar_width / 2, + softmoe_unchanged, + bar_width, + alpha=opacity, + color="#41886c", + label=label1, + yerr=errors, + capsize=3, +) + +bar2 = ax.bar( + np.array(number_of_experts) + bar_width / 2, + softmoe_div_numexperts, + bar_width, + alpha=opacity, + color="#b886b3", + label=label2, + yerr=errors, + capsize=3, +) + +ax.plot( + number_of_experts, + baseline, + linestyle="--", + color="b", + linewidth=2, + label=label3, +) + +ax.set_xlabel(xlabel_value) +ax.set_ylabel(ylabel_value) +ax.set_title(title) +ax.set_xticks(number_of_experts) +ax.set_xticklabels(xticklabels) +ax.set_ylim(ylim_values) +ax.set_yticks(yticks_values) +ax.legend(loc="upper left", title=legend_title) + +# =================== +# Part 4: Saving Output +# =================== +# Displaying the plot with tight layout to minimize white space +plt.tight_layout() +plt.savefig("errorbar_10.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_12.png b/ChartMimic/dataset/ori_500/errorbar_12.png new file mode 100644 index 0000000000000000000000000000000000000000..dd9a322f2f5f22427aaf5d2217f781518c4b7eaf Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_12.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_12.py b/ChartMimic/dataset/ori_500/errorbar_12.py new file mode 100644 index 0000000000000000000000000000000000000000..69f67dff215ed4f4444799cc7104c774c1e81e6a --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_12.py @@ -0,0 +1,85 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Data (estimated from the image) +means = [np.random.uniform(-15, 0, 3) for m in range(4)] +errors = [np.random.randint(1, 5, 3) for n in range(4)] + +# Labels +labels = ["GPT-4", "Claude-2.1", "Claude-2", "GPT-3.5"] +x = np.arange(len(labels) - 1) # Adjusted to have 3 bars instead of 4 + +label_s = [ + ["Claude-2.1", "Claude-2", "GPT-3.5"], + ["GPT-4", "Claude-2", "GPT-3.5"], + ["GPT-4", "Claude-2.1", "Claude-2"], + ["GPT-4", "Claude-2.1", "GPT-3.5"], +] +title = "Sellers (valuation 60)" +xlabel = "Buyer (valuation 40)" +ylim = [-20, 0] +yticks = [-20, -10, 0] + + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Plotting +fig, axs = plt.subplots( + 2, 2, figsize=(8, 5) +) # Adjusted to match the original image's dimensions +# Define colors for each bar +colors = [ + ["sandybrown", "lightseagreen", "indianred"], + ["dodgerblue", "lightseagreen", "indianred"], + ["dodgerblue", "sandybrown", "lightseagreen"], + ["dodgerblue", "sandybrown", "indianred"], +] + + +# Loop through each subplot to set properties +for i, ax in enumerate(axs.flat): + ax.bar( + x, + means[i], + yerr=errors[i], + color=colors[i], + edgecolor="white", + label=label_s[i], + ) + ax.set_xlabel(f"{labels[i]} {xlabel}") + ax.set_xticks([]) + for spine in ax.spines.values(): + spine.set_visible(False) + ax.set_ylim(ylim) + ax.set_yticks(yticks) + ax.set_facecolor("#eaeaf2") + ax.yaxis.grid(color="white", linestyle="-", linewidth=1) + ax.set_axisbelow(True) + ax.tick_params(axis="both", length=0) + +fig.legend( + labels, + loc="lower center", + ncol=4, + bbox_to_anchor=(0.5, -0.1), + title=title, + facecolor="#eaeaf2", +) + +# =================== +# Part 4: Saving Output +# =================== +# Adjust layout +plt.tight_layout() +# Legend +plt.savefig("errorbar_12.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_13.png b/ChartMimic/dataset/ori_500/errorbar_13.png new file mode 100644 index 0000000000000000000000000000000000000000..2eca9f1e1afd69e43f80ae1bf513fdbf59571730 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_13.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_13.py b/ChartMimic/dataset/ori_500/errorbar_13.py new file mode 100644 index 0000000000000000000000000000000000000000..c1d886bb6a2a2106b3bfa65da2b0e2ecd4645ae1 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_13.py @@ -0,0 +1,74 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt + +# =================== +# Part 2: Data Preparation +# =================== +# Data +categories = [ + "DNN x \n(k=1)", + "DNN x \nred\n(k=2)", + "DNN x \n(k=1)", + "DNN x red\n (k=1)", +][::-1] +subcategories = ["[m]", "[ΔR]", "[${ΔR^{-1}}$]", "[none]"][::-1] +values = [ + [0.84, 0.83, 0.82, 0.76], + [0.84, 0.83, 0.825, 0.76], + [0.82, 0.81, 0.8, 0.74], + [0.81, 0.8, 0.79, 0.73], +] +errors = [ + [0.02, 0.01, 0.01, 0.01], + [0.02, 0.01, 0.02, 0.01], + [0.01, 0.04, 0.03, 0.015], + [0.01, 0.01, 0.01, 0.012], +] +percentages = [ + "+9.5%", + "+8.3%", + "+8.0%", + " ", + "+8.0%", + "+6.6%", + "+6.2%", + " ", + "+10.6%", + "+8.9%", + "+8.0%", + " ", + "+9.6%", + "+8.6%", + "+7.8%", + " ", +][::-1] +xlim = [0.5, 0.9] + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Plotting +fig, axes = plt.subplots(4, 1, figsize=(8, 8), sharex=True) + +for i, ax in enumerate(axes): + ax.barh(subcategories, values[i][::-1], xerr=errors[i], color="gray", capsize=5) + ax.set_yticklabels(subcategories) + ax.set_xlim(xlim) + ax.set_ylabel(categories[i]) + for j, v in enumerate(values[i][::-1]): + ax.text( + v + errors[i][j] + 0.01, + j, + percentages[i * 4 + j], + color="black", + va="center", + ) + +# =================== +# Part 4: Saving Output +# =================== +# Adjust layout and save +plt.tight_layout() +plt.savefig("errorbar_13.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_14.png b/ChartMimic/dataset/ori_500/errorbar_14.png new file mode 100644 index 0000000000000000000000000000000000000000..89e2b3aea1a249cef193435890f5e4c43eea4a9d Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_14.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_14.py b/ChartMimic/dataset/ori_500/errorbar_14.py new file mode 100644 index 0000000000000000000000000000000000000000..0cfe0ecff8d2c6219cdbc61492ed160d91b146fb --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_14.py @@ -0,0 +1,66 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Data +categories = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"] +values = [0.18, 0.15, 0.12, 0.09, 0.06, 0.03, -0.06, -0.03, -0.02, -0.03] +errors = [0.05, 0.04, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01] +colors = [ + "#c0d5e6", + "#709ec6", + "#f2a965", + "#c6e1c2", + "#7fba74", + "#eac0bf", + "#d36e6c", + "#7f7f7f", + "#bcbd22", + "#a88a83", +] + +# Axes Limits and Labels +ylabel_value = "Posterior accuracy\n(Δ to no prompting)" +ylim_values = [-0.08, 0.22] + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Create figure and axis +fig, ax = plt.subplots(figsize=(8, 6)) + +# Bar chart +bars = ax.bar( + categories, values, yerr=errors, color=colors, capsize=0, edgecolor="none" +) +ax.set_xticks([]) +# Set labels +ax.set_ylabel(ylabel_value) + +# Set x-axis limits and y-axis limits +ax.set_ylim(ylim_values) + +# Remove top and right spines +ax.spines["top"].set_visible(False) +ax.spines["right"].set_visible(False) +ax.spines["left"].set_visible(True) +ax.spines["bottom"].set_visible(True) + +# Remove grid lines +ax.yaxis.grid(False) +ax.xaxis.grid(False) + +# =================== +# Part 4: Saving Output +# =================== +# Adjust layout to prevent clipping of ylabel +plt.tight_layout() +plt.savefig("errorbar_14.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_15.png b/ChartMimic/dataset/ori_500/errorbar_15.png new file mode 100644 index 0000000000000000000000000000000000000000..8a3d79342aef857bf9c3db85db69ec661749d25b Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_15.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_15.py b/ChartMimic/dataset/ori_500/errorbar_15.py new file mode 100644 index 0000000000000000000000000000000000000000..f36400a71798062daeacdc166afb74234149e5d5 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_15.py @@ -0,0 +1,63 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Data +categories = ["Medium", "Medium-replay", "Medium-expert"] +methods = ["AUG", "TEstimation", "Qualification", "DiffStitch"] +performance = np.array([[60, 70, 80, 70], [80, 70, 75, 80], [70, 80, 75, 80]]) +errors = np.array([[10, 10, 6, 6], [6, 10, 5, 4], [10, 4, 5, 4]]) +ylim = [40, 90] +ylabel = "Performance" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Figure size 720x216 pixels +fig, axes = plt.subplots(1, 3, figsize=(10, 3)) +# Colors +colors = ["#d66929", "#f7cc46", "blue", "darkblue"] + +# Bar width +bar_width = 1 + +# Plotting bars +for i, ax in enumerate(axes): + for j, method in enumerate(methods): + ax.bar( + j + bar_width * i, + performance[i, j], + width=bar_width, + color=colors[j], + yerr=errors[i, j], + capsize=5, + label=method if i == 0 else "", + ) + +# Setting x-axis labels, y-axis limits, and titles +for i, ax in enumerate(axes): + ax.set_xticks([]) + # ax.set_xticklabels(methods) + ax.set_ylim(ylim) + ax.set_xlabel(f"({chr(97+i)}) {categories[i]}") + ax.set_ylabel(ylabel) + ax.yaxis.grid(True) + ax.set_axisbelow(True) + +# Adding legend outside of the plot +fig.legend(loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=len(methods)) + +# =================== +# Part 4: Saving Output +# =================== +# Adjusting layout and saving the figure +plt.tight_layout() +plt.savefig("errorbar_15.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_17.png b/ChartMimic/dataset/ori_500/errorbar_17.png new file mode 100644 index 0000000000000000000000000000000000000000..ad447385d2566438e49f46e6ff7f843ce4cf69a1 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_17.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_17.py b/ChartMimic/dataset/ori_500/errorbar_17.py new file mode 100644 index 0000000000000000000000000000000000000000..11a3a400f1f65d1b5c5cc57ddc2a791c15cd336f --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_17.py @@ -0,0 +1,39 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +categories = ["United States", "Germany", "India", "Brazil", "Japan"] + +values = [0.88, 0.65, 0.25, 0.36, 0.62] +errors = [0.03, 0.02, 0.05, 0.04, 0.03] + +categories2 = ["United States", "Germany", "India", "Brazil", "Japan"] +values2 = [16, 15, 35, 20, 12] +errors2 = [1, 0.5, 2, 1.5, 0.5] + +titles = ["Higher Education Enrollment Rate", "Student-Teacher Ratio"] + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +colors = plt.get_cmap("Set3")(np.linspace(0.2, 0.8, 5)) +fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6)) +ax1.barh(categories, values, xerr=errors, color=colors, capsize=3) +ax2.barh(categories2, values2, xerr=errors2, color=colors, capsize=3) + +ax1.set_title(titles[0]) +ax2.set_title(titles[1]) + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("errorbar_17.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_19.png b/ChartMimic/dataset/ori_500/errorbar_19.png new file mode 100644 index 0000000000000000000000000000000000000000..033704b1871688a41facec90dba795c02d65cd42 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_19.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_19.py b/ChartMimic/dataset/ori_500/errorbar_19.py new file mode 100644 index 0000000000000000000000000000000000000000..6934712687fbf947f1d5ad5e287f5c62c808bd07 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_19.py @@ -0,0 +1,76 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Data representing social statistics for three different cities +categories = ["Detroit", "Philadelphia", "Baltimore"] +metrics = [ + "Crime Rate", + "Happiness Index", + "Social Security Coverage", + "Political Participation", +] +performance = np.array( + [ + [50, 70, 90, 80], + [60, 80, 85, 75], + [40, 75, 95, 85], + ] +) +errors = np.array( + [ + [5, 6, 9, 6], + [6, 7, 8, 7], + [8, 9, 6, 8], + ] +) +ylim = [30, 100] +ylabel = "Percentage" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Figure size to match a 3x1 subplot layout +fig, axes = plt.subplots(3, 1, figsize=(10, 9), sharex=True) +# Colors, choosing a different palette to differentiate the plots +colors = ["#8e44ad", "#3498db", "#e74c3c", "#f1c40f"] + +# Plotting bars +for i, ax in enumerate(axes): + for j, metric in enumerate(metrics): + ax.bar( + j, + performance[i, j], + width=0.8, + color=colors[j], + yerr=errors[i, j], + capsize=0, + label=metric if i == 0 else "", + ) + + # Setting x-axis labels, y-axis limits, and titles + ax.set_xticks(range(len(metrics))) + ax.set_xticklabels(metrics, rotation=45) + ax.set_ylim(ylim) + ax.set_xlabel(f"({chr(97+i)}) {categories[i]}") + ax.set_ylabel(ylabel) + ax.yaxis.grid(True) + ax.set_axisbelow(True) + +# Adding a legend outside of the plot on top +fig.legend(loc="upper center", bbox_to_anchor=(0.5, 1.05), ncol=len(metrics)) + +# =================== +# Part 4: Saving Output +# =================== +# Adjusting layout to prevent overlap and ensure labels are visible +plt.tight_layout() +plt.savefig("errorbar_19.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_21.png b/ChartMimic/dataset/ori_500/errorbar_21.png new file mode 100644 index 0000000000000000000000000000000000000000..052cb9013db5bde27f9d9eebf8b61639465e320e Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_21.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_21.py b/ChartMimic/dataset/ori_500/errorbar_21.py new file mode 100644 index 0000000000000000000000000000000000000000..35d07f28e7b1acdfea2cd354686f1583085bc5e7 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_21.py @@ -0,0 +1,81 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Categories and values for different countries +categories = ["Germany", "China", "USA", "India", "Brazil"][::-1] +energy_consumption = [-4000, -6000, -5500, -3000, -2000][ + ::-1 +] # Total energy consumption in Petajoules +consumption_error = [400, 550, 400, 550, 400][ + ::-1 +] # Error values for energy consumption + +renewable_energy = [20, 25, 18, 15, 10][ + ::-1 +] # Renewable energy usage as percentage of total +renewable_error = [3, 3.5, 4, 2.5, 3.8][::-1] # Error values for renewable energy usage +xlabels = ["Energy Consumption (Petajoules)", "Renewable Energy Usage (%)"] +titles = ["Total Energy Consumption by Country", "Renewable Energy Usage by Country"] +xlims = [[-6500, 0], [0, 30]] + + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Create horizontal bar chart with subplots +fig, axes = plt.subplots(1, 2, figsize=(10, 6), sharey=True) # Adjust figure size + +# Setting colors for the bars +neg_colors = ["#c5b3d6"] * 5 +pos_colors = ["#76d7c4"] * 5 + +# Plotting bars for negative values (Energy Consumption) +bars = axes[0].barh( + categories, + energy_consumption, + color=neg_colors, + edgecolor="white", + height=0.5, + xerr=consumption_error, + capsize=0, +) +axes[0].set_xlabel(xlabels[0]) +axes[0].set_title(titles[0]) +axes[0].invert_yaxis() +axes[0].set_xlim(xlims[0]) +axes[0].xaxis.grid(True) +axes[0].spines["top"].set_visible(False) +axes[0].spines["right"].set_visible(False) + +# Plotting bars for positive values (Renewable Energy Usage) +bars2 = axes[1].barh( + categories, + renewable_energy, + color=pos_colors, + edgecolor="white", + height=0.5, + xerr=renewable_error, + capsize=0, +) +axes[1].set_xlabel(xlabels[1]) +axes[1].set_title(titles[1]) +axes[1].invert_yaxis() +axes[1].set_xlim(xlims[1]) +axes[1].xaxis.grid(True) +axes[1].spines["top"].set_visible(False) +axes[1].spines["right"].set_visible(False) + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("errorbar_21.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_23.png b/ChartMimic/dataset/ori_500/errorbar_23.png new file mode 100644 index 0000000000000000000000000000000000000000..59951534dc8730cabdd7945d224ceafc91833b44 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_23.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_23.py b/ChartMimic/dataset/ori_500/errorbar_23.py new file mode 100644 index 0000000000000000000000000000000000000000..8b78e70950b29927eafc93f1dd6e818aa03b41ce --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_23.py @@ -0,0 +1,88 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Data +entities = ["Wind", "Solar", "Hydro", "Nuclear"] +protocols = [ + "Installation Efficiency", + "Operational Efficiency", + "Maintenance Costs", + "Environmental Impact", + "Regulatory Compliance", + "Safety Standards", +] +# Simulated mean scores for different protocols (more distinctive values) +efficiency_means = np.array( + [ + [95, 60, 90, 55, 80, 95], # Wind + [70, 90, 70, 85, 60, 85], # Solar + [85, 75, 100, 70, 90, 75], # Hydro + [60, 85, 65, 95, 85, 65], # Nuclear + ] +) + +# Simulated standard deviations for scores (made more dramatic) +efficiency_std = np.array( + [ + [5, 10, 6, 8, 5, 3], # Wind + [8, 6, 7, 5, 9, 4], # Solar + [7, 8, 5, 10, 6, 5], # Hydro + [9, 7, 8, 4, 7, 6], # Nuclear + ] +) +xlabel = "Energy Assessment Entity" +ylabel = "Efficiency and Cost Scores (%)" +ylim = [40, 105] +legendtitle = "Evaluation Protocol" + + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +fig, ax = plt.subplots(figsize=(10, 5)) +# Subdued color palette +colors = ["#92c6ff", "#97f0aa", "#ff9f9a", "#d0bbff", "#ffb480", "#99e6e6"] + +# Bar width and positions +bar_width = 0.12 + +# Positions of the bar groups +r = np.arange(len(entities)) + +# Drawing bars for different protocols +for i in range(len(protocols)): + ax.bar( + r + i * bar_width, + efficiency_means[:, i], + yerr=efficiency_std[:, i], + width=bar_width, + label=protocols[i], + capsize=0, + color=colors[i], + edgecolor="black", + ) + +# Set x-axis labels and axis properties +ax.set_xlabel(xlabel) +ax.set_xticks(r + bar_width * (len(protocols) / 2)) +ax.set_xticklabels(entities) +ax.set_ylabel(ylabel) +ax.set_ylim(ylim) # Adjust y-axis to better fit extended range + +# Customize the legend +ax.legend(loc="lower center", bbox_to_anchor=(0.5, -0.4), title=legendtitle, ncol=3) + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("errorbar_23.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_28.png b/ChartMimic/dataset/ori_500/errorbar_28.png new file mode 100644 index 0000000000000000000000000000000000000000..0a2af3412d3ff1bb8c49e57f4cbf6a5ddbec780a Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_28.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_28.py b/ChartMimic/dataset/ori_500/errorbar_28.py new file mode 100644 index 0000000000000000000000000000000000000000..ca2020988fa200fedc274861577c4539b0ea4182 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_28.py @@ -0,0 +1,82 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + +import matplotlib.colors as mcolors + +# =================== +# Part 2: Data Preparation +# =================== +# Data for environmental factors affecting plant growth +categories = [ + "Sunlight", + "Water Quality", + "Soil pH", + "Fertilizer", + "Temperature", + "Pesticides", + "CO2 Levels", + "Plant Variety", + "Planting Density", + "Watering Frequency", +] +values = [0.18, 0.15, 0.12, 0.09, 0.06, 0.03, -0.06, -0.03, -0.02, -0.03] +errors = [0.05, 0.04, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01] + +min_val = min(values) - 0.1 +max_val = max(values) + 0.1 + + +# Normalizing function to convert values to a 0-1 range for color scaling +def normalize(value, min_val, max_val): + return (value - min_val) / (max_val - min_val) + + +# Determine color based on normalized value +def get_color(value): + norm_value = normalize(value, min_val, max_val) + green_base = np.array(mcolors.to_rgb("#6a8347")) + # Create a color that ranges from very light green to the base green + return mcolors.to_hex((1 - green_base) * (1 - norm_value) + green_base) + + +colors = [get_color(value) for value in values] + +# Axes Limits and Labels +ylabel_value = "Environmental Factors" +xlabel_value = "Impact on Plant Growth (Δ to control)" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Create figure and axis +fig, ax = plt.subplots(figsize=(10, 8)) + +# Horizontal bar chart +bars = ax.barh( + categories, values, xerr=errors, color=colors, capsize=3, edgecolor="none" +) +ax.set_ylabel(ylabel_value) +ax.set_xlabel(xlabel_value) + +# Set y-axis limits and x-axis limits +ax.set_xlim(min_val, max_val) # Adjust limits to encompass errors + +# Remove top and right spines for a cleaner look +ax.spines["top"].set_visible(False) +ax.spines["right"].set_visible(False) + +# Customize grid lines +ax.xaxis.grid(True, linestyle="--", which="major", color="gray", alpha=0.6) +ax.set_axisbelow(True) + +# =================== +# Part 4: Saving Output +# =================== +# Adjust layout to prevent clipping of ylabel +plt.tight_layout() +plt.savefig("errorbar_28.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_29.png b/ChartMimic/dataset/ori_500/errorbar_29.png new file mode 100644 index 0000000000000000000000000000000000000000..c05e8391798e08969bf5d2ceef1f548f59b859cb Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_29.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_29.py b/ChartMimic/dataset/ori_500/errorbar_29.py new file mode 100644 index 0000000000000000000000000000000000000000..2422970da67645d51e29eeb881f9639143c84424 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_29.py @@ -0,0 +1,83 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Updated Urban Transportation Data for three major cities +metrics = ["Traffic Volume", "Public Transit", "Accident Rate"] +values = np.array( + [ + [220, 180, 220], # New York + [150, 120, 130], # Los Angeles + [130, 160, 110], # Chicago + ] +) + +# Updated asymmetric error values, now more proportionate to the data scale +errors = np.array( + [ + [[25, 20], [15, 15], [25, 20]], # Errors for New York (lower, upper) + [[20, 15], [10, 15], [20, 10]], # Errors for Los Angeles + [[15, 20], [15, 10], [15, 15]], # Errors for Chicago + ] +) + +# Creating subplots for each city +cities = ["New York", "Los Angeles", "Chicago"] + +ylabel = "Metric Values" +ylim = [80, 280] + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +fig, axs = plt.subplots(1, 3, figsize=(10, 4)) # Compact and square figure layout + + +# Function to plot each city's data +def plot_city_data(ax, errors, city_index, city_name): + x = np.arange(len(metrics)) # the label locations + bar_colors = ["#6a8347", "#377eb8", "#d62728"] + barerrors = np.array(errors).T[:, :, city_index] + bars = ax.bar(x, values[city_index], yerr=barerrors, color=bar_colors, capsize=5) + for bar, lower_error, upper_error in zip(bars, barerrors[0], barerrors[1]): + # Position for lower error text + ax.text( + bar.get_x() + bar.get_width() / 2, + bar.get_height() - lower_error - 15, + f"-{lower_error}", + va="bottom", + ha="center", + color="black", + ) + # Position for upper error text + ax.text( + bar.get_x() + bar.get_width() / 2, + bar.get_height() + upper_error + 3, + f"+{upper_error}", + ha="center", + color="black", + ) + + ax.set_title(city_name) + ax.set_xticks(x) + ax.set_xticklabels(metrics, rotation=90) + ax.set_ylabel(ylabel) + ax.set_ylim(ylim) # Uniform scale for all charts + + +for i, city in enumerate(cities): + plot_city_data(axs[i], errors, i, city) + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("errorbar_29.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_4.png b/ChartMimic/dataset/ori_500/errorbar_4.png new file mode 100644 index 0000000000000000000000000000000000000000..fcd4777d95c52652b68fad6177ecf1b08821bf28 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_4.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_4.py b/ChartMimic/dataset/ori_500/errorbar_4.py new file mode 100644 index 0000000000000000000000000000000000000000..3cbd9e006afa80be4c9461ea27024c4c115f21f9 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_4.py @@ -0,0 +1,62 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Data +roles = ["Werewolf", "Seer", "Witch", "Hunter", "Villager"] +duration_means = [84.97, 102.67, 67.17, 78.22, 85.17] +duration_errors = [15, 20, 10, 15, 10] +tokens_means = [449.33, 780.67, 547.39, 612.99, 618.52] +tokens_errors = [100, 150, 80, 100, 90] + +ylabel1 = "Duration (s)" +xlabel1 = "(a) Speak duration of roles" +ylabel2 = "Tokens" +xlabel2 = "(b) Speak tokens of roles" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Create subplots +fig, (ax1, ax2) = plt.subplots( + 1, 2, figsize=(10, 4) +) # Adjusted for the given dimensions +colors = ["#acd9bb", "#83c3c7", "#5da2c7", "#3a77b0", "#224e8d"] + +# Speak duration of roles +ax1.bar(roles, duration_means, yerr=duration_errors, color=colors, capsize=5) +ax1.set_ylabel(ylabel1) +ax1.set_xlabel(xlabel1) +for i, v in enumerate(duration_means): + ax1.text(i, v + duration_errors[i] + 2, str(v), ha="center", va="bottom") +ax1.spines["top"].set_visible(False) +ax1.spines["right"].set_visible(False) +ax1.yaxis.grid(True) +ax1.set_axisbelow(True) + +# Speak tokens of roles +ax2.bar(roles, tokens_means, yerr=tokens_errors, color=colors, capsize=5) +ax2.set_ylabel(ylabel2) +ax2.set_xlabel(xlabel2) +for i, v in enumerate(tokens_means): + ax2.text(i, v + tokens_errors[i] + 20, str(v), ha="center", va="bottom") + +ax2.spines["top"].set_visible(False) +ax2.spines["right"].set_visible(False) +ax2.yaxis.grid(True) +ax2.set_axisbelow(True) + +# =================== +# Part 4: Saving Output +# =================== +# Adjust layout and save the figure +plt.tight_layout() +plt.savefig("errorbar_4.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_5.png b/ChartMimic/dataset/ori_500/errorbar_5.png new file mode 100644 index 0000000000000000000000000000000000000000..03240a4ff78509a2f3b8d39ab7c97089c84b3745 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_5.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_5.py b/ChartMimic/dataset/ori_500/errorbar_5.py new file mode 100644 index 0000000000000000000000000000000000000000..93ef444dd4c31d247aeda7be550666db1ed0f3b2 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_5.py @@ -0,0 +1,74 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt + +# =================== +# Part 2: Data Preparation +# =================== +# Data for plotting +sizes = ["5%", "10%", "20%", "30%", "40%", "50%"] +samples = [ + "(40 samples)", + "(81 samples)", + "(163 samples)", + "(245 samples)", + "(326 samples)", + "(408 samples)", +] +x = range(len(sizes)) +y = [63.77, 64.17, 64.31, 64.98, 65.82, 65.78] +errors = [1.5, 1.2, 1.3, 1.1, 1.0, 0.8] +ylabel = "True+info (%)" +xlabel = "Size of Data for Training and Validation" +ylim = [56, 67] +yticks = [56, 58, 60, 62, 64, 66] + + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Plotting the bar chart +plt.figure( + figsize=(10, 7) +) # Adjusting figure size to match original image's dimensions +bars = plt.bar(x, y, yerr=errors, color="skyblue", capsize=5) + +# Adding data labels on top of the bars +for bar in bars: + yval = bar.get_height() + plt.text( + bar.get_x() + bar.get_width() / 2, + yval + 0.5, + round(yval, 2), + ha="right", + va="bottom", + ) + +# Setting the x-axis labels with both percentages and sample sizes +plt.xticks(x, [f"{size}\n{sample}" for size, sample in zip(sizes, samples)]) + +# Setting the y-axis label +plt.ylabel(ylabel) + +# Setting the title of the chart +plt.xlabel(xlabel) + +# Adjusting y-axis range +plt.ylim(ylim) +plt.yticks(yticks) +# Adding grid to the background +plt.grid(axis="both", alpha=0.7, which="both", color="gray") + +# Making the axis lines visible +plt.gca().spines["top"].set_visible(True) +plt.gca().spines["right"].set_visible(True) +plt.gca().spines["bottom"].set_visible(True) +plt.gca().spines["left"].set_visible(True) + +# =================== +# Part 4: Saving Output +# =================== +# Displaying the plot with tight layout to minimize white space +plt.tight_layout() +plt.savefig("errorbar_5.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_6.png b/ChartMimic/dataset/ori_500/errorbar_6.png new file mode 100644 index 0000000000000000000000000000000000000000..fadf1a7617f291829ba760e02cebe9e7fb1973d7 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_6.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_6.py b/ChartMimic/dataset/ori_500/errorbar_6.py new file mode 100644 index 0000000000000000000000000000000000000000..61e89a92f91dc4ff1137d7a16ac0940236b01e54 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_6.py @@ -0,0 +1,105 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Data for the left plot (Out-of-domain accuracy) +left_categories = [ + "all", + "arg_causal", + "test_0", + "test_1", + "test_2", + "test_3", + "test_4", + "test_5", + "test_6", + "constant", +] +left_means = [0.832, 0.828, 0.830, 0.829, 0.830, 0.829, 0.828, 0.827, 0.826, 0.826] +left_errors = [0.002] * 10 + +# Data for the right plot (Shift gap) +right_categories = [ + "all", + "arg_causal", + "test_0", + "test_1", + "test_2", + "test_3", + "test_4", + "test_5", + "test_6", + "constant", +] +right_means = [0.040, 0.035, 0.036, 0.036, 0.036, 0.036, 0.036, 0.036, 0.036, 0.035] +right_errors = [0.005] * 10 + +title1 = "Out-of-domain accuracy" +ylim1 = [0.824, 0.835] +yticks1 = np.arange(0.824, 0.835, 0.002) +title2 = "Shift gap" +ylim2 = [0, 0.050] +suptitle = "Diabetes" + + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Create subplots +fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) + +# Left plot +ax1.bar( + left_categories, + left_means, + yerr=left_errors, + color=["#c53a32"] + ["#9ab6bd"] + ["#678c95"] * 7 + ["#454545"], + capsize=5, + error_kw=dict(ecolor="black", lw=1, capsize=5, capthick=2), +) +ax1.set_title(title1) +ax1.set_ylim(ylim1) +ax1.set_yticks(yticks1) +ax1.set_xticklabels(left_categories, rotation=90, ha="center") +ax1.tick_params(axis="both", length=0) # Hide tick marks +ax1.grid(True) +ax1.set_axisbelow(True) +for spine in ax1.spines.values(): + spine.set_color("gray") + +# Right plot +ax2.bar( + right_categories, + right_means, + yerr=right_errors, + color=["#c53a32"] + ["#9ab6bd"] + ["#678c95"] * 7 + ["#454545"], + capsize=5, + error_kw=dict(ecolor="black", lw=1, capsize=5, capthick=2), +) +ax2.set_title(title2) +ax2.set_ylim(ylim2) +ax2.set_xticklabels(right_categories, rotation=90, ha="center") +ax2.tick_params(axis="both", length=0) # Hide tick marks +ax2.grid(True) +ax2.set_axisbelow(True) + +# Set the title for the entire figure +fig.suptitle(suptitle) + +for spine in ax2.spines.values(): + spine.set_color("gray") + +# =================== +# Part 4: Saving Output +# =================== +# Adjust layout and save the figure +plt.tight_layout() +plt.savefig("errorbar_6.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_7.png b/ChartMimic/dataset/ori_500/errorbar_7.png new file mode 100644 index 0000000000000000000000000000000000000000..271afcdf7ff564c466c05c32728f70da7b7ec15d Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_7.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_7.py b/ChartMimic/dataset/ori_500/errorbar_7.py new file mode 100644 index 0000000000000000000000000000000000000000..81231d5b0415d6459fed31976538b3a35250857e --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_7.py @@ -0,0 +1,52 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt + +# =================== +# Part 2: Data Preparation +# =================== +# Data for plotting +categories = [ + "Best-of-Three", + "Initial Distribution", + "0.125 Parameter-Valued\nDistribution", + "Final Distribution with\nGPT-3.5-Turbo", + "Final Distribution with\nGPT-4-Turbo", +] +values = [0.15, 0.35, 0.55, 0.65, 0.8] +errors = [0.05, 0.05, 0.05, 0.05, 0.05] +xlabel = "Objective Value" +title = "Mini Crosswords Performance" +label = "ToT (0.675)" +xvline = 0.675 + + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Plotting the bar chart +plt.figure( + figsize=(10, 6) +) # Adjusting figure size to match the original image's dimensions +plt.barh(categories, values, xerr=errors, color="skyblue", capsize=5) +plt.xlabel(xlabel) +plt.title(title) +plt.gca().tick_params(axis="both", length=0) # Hide tick marks + +# Adding the vertical line +plt.axvline(x=xvline, color="red", linestyle="--", label=label) +plt.gca().grid("both", color="gray", alpha=0.7) + +# Adding the legend +plt.legend() + +for spine in plt.gca().spines.values(): + spine.set_color("gray") + +# =================== +# Part 4: Saving Output +# =================== +# Adjusting the layout and saving the figure +plt.tight_layout() +plt.savefig("errorbar_7.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_8.png b/ChartMimic/dataset/ori_500/errorbar_8.png new file mode 100644 index 0000000000000000000000000000000000000000..395f7ec1f1f85ad341a72bd884b85db6e733c56d Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_8.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_8.py b/ChartMimic/dataset/ori_500/errorbar_8.py new file mode 100644 index 0000000000000000000000000000000000000000..c524c418a591347e9f48955d3343328cc879fe44 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_8.py @@ -0,0 +1,88 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Data (estimated from the image) +models = [ + "BERT", + "RoBERTa", + "DistilBERT", + "XLNet", + "Electra", + "Albert", + "BART", + "DeBERTa", + "Llama2", +] +ground_truth_accuracy = [50, 55, 60, 65, 40, 30, 70, 45, 35] +weak_labels_accuracy = [45, 50, 55, 60, 35, 25, 65, 40, 30] +error = [10, 8, 12, 10, 5, 7, 8, 10, 5] +labels = ["Ground-truth labels", "Weak labels"] +ylabel = "Accuracy (%)" +ylim = [0, 80] +yticks = np.arange(0, 71, 10) + + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +fig = plt.subplots(figsize=(10, 3)) +# Bar width +bar_width = 0.35 + +# X position of bars +r1 = np.arange(len(ground_truth_accuracy)) +r2 = [x + bar_width for x in r1] + +# Create bars +plt.bar( + r1, + ground_truth_accuracy, + color="#d47e6d", + width=bar_width, + label=labels[0], + yerr=error, + capsize=7, +) +plt.bar( + r2, + weak_labels_accuracy, + color="#76a4c5", + width=bar_width, + label=labels[1], + yerr=error, + capsize=7, +) + +# Add xticks on the middle of the group bars +plt.xticks([r + bar_width / 2 for r in range(len(ground_truth_accuracy))], models) + +# Create legend & Show graphic +plt.ylabel(ylabel) +plt.legend(frameon=False, loc="upper right") # Remove legend background + +# Set background color and grid +plt.gca().set_facecolor("#e5e5e5") +plt.grid(color="white", linestyle="-", linewidth=0.25, axis="both") +plt.gca().set_axisbelow(True) + +# Set y-axis limits +plt.ylim(ylim) +plt.yticks(yticks) + +for spine in plt.gca().spines.values(): + spine.set_visible(False) + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("errorbar_8.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorbar_9.png b/ChartMimic/dataset/ori_500/errorbar_9.png new file mode 100644 index 0000000000000000000000000000000000000000..2222614570f5bb47162ddd823017eccfa17bd675 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorbar_9.png differ diff --git a/ChartMimic/dataset/ori_500/errorbar_9.py b/ChartMimic/dataset/ori_500/errorbar_9.py new file mode 100644 index 0000000000000000000000000000000000000000..bce53cc9302d6e688521bb00b8df9da91d98114f --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorbar_9.py @@ -0,0 +1,64 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt + +# =================== +# Part 2: Data Preparation +# =================== +# Categories and values (estimated from the image) +categories = [ + "Syntax: Tagging, Chunking and Parsing", + "Discourse and Pragmatics", + "Information Extraction", + "Machine Learning for NLP", + "Information Retrieval and Text Mining", + "Phonology, Morphology and Word Segmentation", + "Computational Social Science and Social Media", +][::-1] +values = [-3.20, -3.1, -3.00, -2.90, -2.80, -2.70, -2.60][::-1] +error = [0.1, 0.15, 0.3, 0.25, 0.2, 0.1, 0.05] +xlabel = "A" +ylabel = "Categories" +title = "Your Chart Title Here" +xlim = [-3.5, -1.5] +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Create horizontal bar chart +fig, ax = plt.subplots(figsize=(8, 8)) # Adjust figure size +bars = ax.barh( + categories, + values, + color="#c5b3d6", + edgecolor="white", + height=0.5, + xerr=error, + capsize=0, +) + +# Set labels and title (if any) +ax.set_xlabel(xlabel) +ax.set_ylabel(ylabel) +ax.set_title(title) + +# Invert y-axis to match the image +ax.invert_yaxis() + +# Set x-axis range to match the reference image +ax.set_xlim(xlim) + +# Remove grid lines +ax.xaxis.grid(False) +ax.spines["top"].set_visible(False) +ax.spines["right"].set_visible(False) + +# Set background color to white +ax.set_facecolor("white") + +# =================== +# Part 4: Saving Output +# =================== +# Displaying the plot with tight layout to minimize white space +plt.tight_layout() +plt.savefig("errorbar_9.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorpoint_1.png b/ChartMimic/dataset/ori_500/errorpoint_1.png new file mode 100644 index 0000000000000000000000000000000000000000..2cf05f86f371ce6c9a663efcb49558091367dbab Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorpoint_1.png differ diff --git a/ChartMimic/dataset/ori_500/errorpoint_1.py b/ChartMimic/dataset/ori_500/errorpoint_1.py new file mode 100644 index 0000000000000000000000000000000000000000..eb8ac275dce29ee320d6bf79d5140c7416464e8f --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorpoint_1.py @@ -0,0 +1,66 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Sample data (replace with actual data) +categories = [ + "Kashmir", + "Religion", + "Crime and Justice", + "CAA", + "Pulwama-Balakot", + "Politics", +] +means = np.random.uniform(0.05, 0.15, len(categories)) +std_devs = np.random.uniform(0.01, 0.05, len(categories)) +dataset_mean = np.mean(means) + +# Labels and Plot Types +label_Mean = "Mean" +label_Dataset_mean = "Dataset mean" + +# Axes Limits and Labels +ylabel_value = "Shouting Fraction (Fraction of videos)" +ylim_values = [0.01, 0.18] + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Create figure and axis +fig, ax = plt.subplots(figsize=(8, 5)) + +# Error bar plot +ax.errorbar( + categories, + means, + yerr=std_devs, + fmt="o", + color="blue", + ecolor="blue", + capsize=5, + label=label_Mean, +) + +# Dataset mean line +ax.axhline(y=dataset_mean, color="grey", linestyle="--", label=label_Dataset_mean) + +# Customizing the plot +ax.set_ylabel(ylabel_value) +ax.set_xticklabels(categories, rotation=45, ha="right") +ax.legend() +ax.set_ylim(ylim_values) + +# =================== +# Part 4: Saving Output +# =================== +# Adjust layout to prevent clipping of tick-labels +plt.tight_layout() +plt.savefig("errorpoint_1.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorpoint_2.png b/ChartMimic/dataset/ori_500/errorpoint_2.png new file mode 100644 index 0000000000000000000000000000000000000000..fc4881924a8aca5b9fce4ec4e70037bb9e3625e9 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorpoint_2.png differ diff --git a/ChartMimic/dataset/ori_500/errorpoint_2.py b/ChartMimic/dataset/ori_500/errorpoint_2.py new file mode 100644 index 0000000000000000000000000000000000000000..020f8cb0b46d124bafb7edd11b597de14287332e --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorpoint_2.py @@ -0,0 +1,43 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt + +# =================== +# Part 2: Data Preparation +# =================== +# Data for plotting +categories = ["Pulwama-Balakot", "CAA", "Kashmir", "Religion", "Politics"] +means = [0.24, 0.22, 0.20, 0.19, 0.18] +errors = [0.04, 0.03, 0.02, 0.02, 0.02] +dataset_mean = [0.162] +xlabel = "Incivility (Fraction of Videos)" +label = "Dataset mean" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Plotting the data +plt.figure(figsize=(8, 6)) # Adjusting figure size to match original image's dimensions +plt.errorbar( + means, + categories, + xerr=errors, + fmt="o", + color="#bc4949", + ecolor="#bc4949", + capsize=0, + label="Mean", +) +plt.axvline(dataset_mean, linestyle="--", label=label) + +# Customizing the plot +plt.xlabel(xlabel) +plt.legend() + +# =================== +# Part 4: Saving Output +# =================== +# Adjusting the layout and saving the figure +plt.tight_layout() +plt.savefig("errorpoint_2.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorpoint_4.png b/ChartMimic/dataset/ori_500/errorpoint_4.png new file mode 100644 index 0000000000000000000000000000000000000000..3e0434d9ee4c5c266bff8170e64e64a286d38439 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorpoint_4.png differ diff --git a/ChartMimic/dataset/ori_500/errorpoint_4.py b/ChartMimic/dataset/ori_500/errorpoint_4.py new file mode 100644 index 0000000000000000000000000000000000000000..ac9e0c56b665af12b3bda83a8ee31a21ee8681da --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorpoint_4.py @@ -0,0 +1,72 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt + +# =================== +# Part 2: Data Preparation +# =================== +# Data (example values, replace with actual data) +categories = [ + "Education", + "Religion", + "Bollywood", + "Crime and Justice", + "Farmers Protest", + "Issue Politics", +] +unique_speaker_mean = [10, 12, 11, 13, 14, 15] # Replace with actual mean values +unique_shouter_mean = [5, 6, 7, 6, 5, 4] # Replace with actual mean values +unique_speaker_error = [1, 1.5, 1, 1.5, 2, 1.5] # Replace with actual error values +unique_shouter_error = [ + 0.5, + 0.75, + 0.5, + 0.75, + 1, + 0.75, +] # Replace with actual error values +labels = ["Unique speaker count mean", "Unique shouter count mean"] +ylabel = "Number of speakers" +axlabel = "Dataset unique shouter count mean" +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Plotting +fig, ax = plt.subplots( + figsize=(10, 6) +) # Adjust the size to match the original image's dimensions +ax.errorbar( + categories, + unique_speaker_mean, + yerr=unique_speaker_error, + fmt="o", + color="blue", + label=labels[0], +) +ax.errorbar( + categories, + unique_shouter_mean, + yerr=unique_shouter_error, + fmt="o", + color="red", + label=labels[1], +) + +# Customization +ax.set_ylabel(ylabel) +ax.set_xticklabels(categories, rotation=45, ha="right") +ax.axhline( + y=sum(unique_shouter_mean) / len(unique_shouter_mean), + color="grey", + linestyle="--", + label=axlabel, +) +ax.legend() + +# =================== +# Part 4: Saving Output +# =================== +# Show plot +plt.tight_layout() +plt.savefig("errorpoint_4.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorpoint_5.png b/ChartMimic/dataset/ori_500/errorpoint_5.png new file mode 100644 index 0000000000000000000000000000000000000000..72116c80e34a0554e1e03264cc1af78ae3649470 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorpoint_5.png differ diff --git a/ChartMimic/dataset/ori_500/errorpoint_5.py b/ChartMimic/dataset/ori_500/errorpoint_5.py new file mode 100644 index 0000000000000000000000000000000000000000..d7701a526ba731c5c0e4aed758a6ca15a735b245 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorpoint_5.py @@ -0,0 +1,77 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt + +# =================== +# Part 2: Data Preparation +# =================== +# Data for plotting +categories = [ + "KASHMIR", + "COVID/LOCKDOWN", + "SPORTS", + "CHINA", + "PULWAMA-BALAKOT", +] # Capitalized category labels +means = [0.22, 0.23, 0.18, 0.12, 0.05] +errors = [0.03, 0.02, 0.05, 0.06, 0.02] +downerrors = [0.01, 0.02, 0.03, 0.04, 0.05] +legendtitles = ["Dataset mean", "Mean"] +texttitle = "Dataset mean" +ylabel = "Female Face presence (Fraction of videos)" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +# Plotting the data +fig, ax = plt.subplots( + figsize=(8, 6) +) # Adjusting figure size to match original image dimensions +ax.errorbar( + categories, + means, + yerr=[errors, downerrors], + fmt="o", + color="blue", + ecolor="blue", + capsize=5, +) + +# Adding a legend with both "Mean" and "Dataset mean" +dataset_mean = 0.253 +mean_line = ax.errorbar( + [], [], yerr=[], fmt="o", color="blue", ecolor="blue", capsize=5 +) +dataset_mean_line = ax.axhline( + y=dataset_mean, color="gray", linestyle="--", linewidth=1 +) +ax.legend( + [dataset_mean_line, mean_line], + legendtitles, + loc="upper right", + fancybox=True, + framealpha=1, + shadow=True, + borderpad=1, +) +# Adding a horizontal line for dataset mean and text annotation with a white background +ax.text( + 0.95, + dataset_mean, + texttitle, + va="center", + ha="right", + backgroundcolor="white", + transform=ax.get_yaxis_transform(), +) +# Setting labels +ax.set_ylabel(ylabel) +ax.set_title("") +plt.xticks(rotation=30) + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("errorpoint_5.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorpoint_6.png b/ChartMimic/dataset/ori_500/errorpoint_6.png new file mode 100644 index 0000000000000000000000000000000000000000..27ec5b42b6a5a975e9a535ceba330a68461afdeb Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorpoint_6.png differ diff --git a/ChartMimic/dataset/ori_500/errorpoint_6.py b/ChartMimic/dataset/ori_500/errorpoint_6.py new file mode 100644 index 0000000000000000000000000000000000000000..05083d53e52b97bdc71d61a04b114602eae12d8e --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorpoint_6.py @@ -0,0 +1,105 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# example data +x = np.array([0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]) +y = np.exp(-x) +xerr = 0.2 +yerr = 0.15 + +# lower & upper limits of the error +lolims = np.array([0.3, 0, 0.4, 0, 0, 1, 0, 0, 1.2, 0], dtype=bool) +uplims = np.array([0.5, 0, 0, 0.1, 0, 0.5, 0, 0.3, 0, 0], dtype=bool) +ls = "None" +labels = [ + "standard", + "upper limits", + "lower limits", + "upper and lower limits", + "random", +] +title = "Errorbar upper and lower limits" +xlim = [0, 5.5] +colors =[ "#b2e7aa", "#fae18f", "#d75949", "#f0906d", "#a1a8d6"] +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +fig, ax = plt.subplots(figsize=(9, 6)) + +# standard error bars +ax.errorbar(x, y, xerr=xerr, yerr=yerr, label=labels[0], linestyle=ls, color=colors[0]) +# including upper limits +ax.errorbar( + x, y + 1, xerr=xerr, yerr=yerr, uplims=uplims, label=labels[1], linestyle=ls, color=colors[1] +) + +# including lower limits +ax.errorbar( + x, y + 0.25, xerr=xerr, yerr=yerr, lolims=lolims, label=labels[2], linestyle=ls, color=colors[2] +) + +# including upper and lower limits +ax.errorbar( + x, + y + 1.25, + xerr=xerr, + yerr=yerr, + lolims=lolims, + uplims=uplims, + marker="o", + markersize=8, + label=labels[3], + linestyle=ls, + color=colors[3], +) + +# Plot a series with lower and upper limits in both x & y +# constant x-error with varying y-error +xerr = 0.2 +yerr = np.full_like(x, 0.2) +yerr[[3, 6]] = 0.3 + +# mock up some limits by modifying previous data +xlolims = lolims +xuplims = uplims +lolims = np.zeros_like(x) +uplims = np.zeros_like(x) +lolims[[6]] = True # only limited at this index +uplims[[3]] = True # only limited at this index + +# do the plotting +ax.errorbar( + x, + y + 2.1, + xerr=xerr, + yerr=yerr, + xlolims=xlolims, + xuplims=xuplims, + uplims=uplims, + lolims=lolims, + marker="o", + markersize=8, + linestyle="none", + label=labels[4], + color=colors[4], +) + +# tidy up the figure +ax.set_xlim(xlim) +ax.set_title(title) +plt.legend(bbox_to_anchor=(0.5, 1.15), ncol=5, loc="upper center") + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("errorpoint_6.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorpoint_7.png b/ChartMimic/dataset/ori_500/errorpoint_7.png new file mode 100644 index 0000000000000000000000000000000000000000..fe1cc0dc32c3831bdeb514951d670108d4939b72 Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorpoint_7.png differ diff --git a/ChartMimic/dataset/ori_500/errorpoint_7.py b/ChartMimic/dataset/ori_500/errorpoint_7.py new file mode 100644 index 0000000000000000000000000000000000000000..253b05486586abfac8adca22016be124eb477431 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorpoint_7.py @@ -0,0 +1,38 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# example data +x = np.arange(0.1, 4, 0.5) +y = np.exp(-x) +error = 0.1 + 0.2 ** x +lower_error = 0.4 * error +upper_error = error +asymmetric_error = [lower_error, upper_error] +title = "variable, symmetric error" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +fig, (ax0, ax1) = plt.subplots(figsize=(10, 4), ncols=2, sharex=True) + +ax0.errorbar(x, y, yerr=error, fmt="o", color="#b383b9") +ax0.set_title(title) + +ax1.errorbar(x, y, xerr=asymmetric_error, fmt="o", color="#4b9c7a") +ax1.set_title(title) +ax1.set_yscale("log") + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("errorpoint_7.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/errorpoint_9.png b/ChartMimic/dataset/ori_500/errorpoint_9.png new file mode 100644 index 0000000000000000000000000000000000000000..5c5fa5e84f8a8f43e80512551e84d085da06f14d Binary files /dev/null and b/ChartMimic/dataset/ori_500/errorpoint_9.png differ diff --git a/ChartMimic/dataset/ori_500/errorpoint_9.py b/ChartMimic/dataset/ori_500/errorpoint_9.py new file mode 100644 index 0000000000000000000000000000000000000000..f9b8502b18d769e9b0fc7abd6876b073c93fa346 --- /dev/null +++ b/ChartMimic/dataset/ori_500/errorpoint_9.py @@ -0,0 +1,55 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +x = np.linspace(0, 20, 10) +y = np.random.uniform(10, 20, 10) +left_error = np.random.uniform(1, 3, 10) +right_error = np.random.uniform(1, 3, 10) +title = "variable, asymmetric error" + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +fig, ax = plt.subplots(figsize=(10, 7)) +ax.errorbar( + x, + y, + xerr=[left_error, right_error], + fmt="o", + color="#6d32a8", + capsize=0, + label="errorbar", +) +for i, (xi, yi, lefterror, righterror) in enumerate(zip(x, y, left_error, right_error)): + ax.text( + xi - 0.8 * lefterror, + yi + 0.1, + r"${-%.1f}$" % (lefterror), + va="center", + ha="center", + ) + ax.text( + xi + 0.8 * righterror, + yi + 0.1, + r"${+%.1f}$" % (righterror), + va="center", + ha="center", + ) +ax.set_title(title) +ax.legend(loc="upper left") +ax.xaxis.grid(True) + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("errorpoint_9.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/graph_1.png b/ChartMimic/dataset/ori_500/graph_1.png new file mode 100644 index 0000000000000000000000000000000000000000..0272a8487a7db8b6576ba5476dd6723cdcae4d60 Binary files /dev/null and b/ChartMimic/dataset/ori_500/graph_1.png differ diff --git a/ChartMimic/dataset/ori_500/graph_1.py b/ChartMimic/dataset/ori_500/graph_1.py new file mode 100644 index 0000000000000000000000000000000000000000..019379b4a6deb431e926822257c1d5e27fb0dc6a --- /dev/null +++ b/ChartMimic/dataset/ori_500/graph_1.py @@ -0,0 +1,56 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import networkx as nx + +# =================== +# Part 2: Data Preparation +# =================== +# Create a directed graph +G = nx.DiGraph() + +# Add nodes with their respective colors +nodes = { + 0: "teal", + 1: "coral", + 2: "gold", + 3: "indigo", + 4: "skyblue", + 5: "salmon", + 6: "orchid", +} +for node, color in nodes.items(): + G.add_node(node, color=color) + +# Add edges with labels +edges = [(0, 1, "0"), (1, 2, "1"), (2, 3, "0"), (3, 4, "1"), (4, 5, "0"), (5, 6, "1")] +for u, v, label in edges: + G.add_edge(u, v, label=label) + +# Define node positions in a circular layout +pos = nx.circular_layout(G) + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +fig = plt.subplots(figsize=(8, 8)) + +# Draw nodes with color attribute +node_colors = [G.nodes[node]["color"] for node in G.nodes] +nx.draw_networkx_nodes(G, pos, node_color=node_colors) + +# Draw edges with labels +nx.draw_networkx_edges(G, pos, arrows=True) +edge_labels = {(u, v): G[u][v]["label"] for u, v in G.edges} +nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) + +# Remove axis +plt.axis("off") + +# =================== +# Part 4: Saving Output +# =================== +# Displaying the plot with tight layout to minimize white space +plt.tight_layout() +plt.savefig("graph_1.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/graph_2.png b/ChartMimic/dataset/ori_500/graph_2.png new file mode 100644 index 0000000000000000000000000000000000000000..c6734ebd7696a8c61d2df5d4f56a150e9654befa Binary files /dev/null and b/ChartMimic/dataset/ori_500/graph_2.png differ diff --git a/ChartMimic/dataset/ori_500/graph_2.py b/ChartMimic/dataset/ori_500/graph_2.py new file mode 100644 index 0000000000000000000000000000000000000000..4789866cff90c4dde12c78c0f4401bae9bec3174 --- /dev/null +++ b/ChartMimic/dataset/ori_500/graph_2.py @@ -0,0 +1,50 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import networkx as nx +import numpy as np + +np.random.seed(0) + + +# =================== +# Part 2: Data Preparation +# =================== +# Create a random graph +G = nx.random_geometric_graph(30, 0.3) + +# Position the nodes based on their connections using a different layout algorithm +pos = nx.kamada_kawai_layout( + G +) # This layout algorithm may produce a more spread-out layout + +# Randomly select some edges to color blue +edges = list(G.edges()) +blue_edges = np.random.choice( + len(edges), size=int(len(edges) * 0.3), replace=False +) # 30% of the edges +blue_edges = [edges[i] for i in blue_edges] + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +fig = plt.subplots(figsize=(8, 8)) + +# Draw the nodes +nx.draw_networkx_nodes(G, pos, node_size=200, node_color="pink") + +# Draw the edges +nx.draw_networkx_edges(G, pos, alpha=0.3) + +# Draw the selected edges in blue +nx.draw_networkx_edges(G, pos, edgelist=blue_edges, edge_color="#d0e2e8") + +# Remove axis +plt.axis("off") + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("graph_2.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/graph_3.png b/ChartMimic/dataset/ori_500/graph_3.png new file mode 100644 index 0000000000000000000000000000000000000000..33d953399ea28b3799863943c377130233d3e49d Binary files /dev/null and b/ChartMimic/dataset/ori_500/graph_3.png differ diff --git a/ChartMimic/dataset/ori_500/graph_3.py b/ChartMimic/dataset/ori_500/graph_3.py new file mode 100644 index 0000000000000000000000000000000000000000..fd496773cf4d3f8223675f88582c895c74016028 --- /dev/null +++ b/ChartMimic/dataset/ori_500/graph_3.py @@ -0,0 +1,35 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import networkx as nx + +# =================== +# Part 2: Data Preparation +# =================== +# Create a cycle graph with 12 nodes +G = nx.cycle_graph(12) +weights = {edge: i + 1 for i, edge in enumerate(G.edges())} +nx.set_edge_attributes(G, weights, "weight") + +pos = nx.spring_layout(G, iterations=200) + +labels = {i: str(i) for i in range(12)} + +# Draw edge labels +edge_labels = nx.get_edge_attributes(G, "weight") + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +plt.figure(figsize=(10, 8)) +nx.draw(G, pos, node_size=800, node_color="gold") +nx.draw_networkx_labels(G, pos, labels=labels) +nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) + +# =================== +# Part 4: Saving Output +# =================== +# Show the plot +plt.tight_layout() +plt.savefig("graph_3.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/graph_4.png b/ChartMimic/dataset/ori_500/graph_4.png new file mode 100644 index 0000000000000000000000000000000000000000..3879608d869af79ebc9ea6603140ab369a6fc9c5 Binary files /dev/null and b/ChartMimic/dataset/ori_500/graph_4.png differ diff --git a/ChartMimic/dataset/ori_500/graph_4.py b/ChartMimic/dataset/ori_500/graph_4.py new file mode 100644 index 0000000000000000000000000000000000000000..9a6a128cba67f695f9cc8175b20a101278a5bf91 --- /dev/null +++ b/ChartMimic/dataset/ori_500/graph_4.py @@ -0,0 +1,33 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import matplotlib.pyplot as plt +import networkx as nx + +# =================== +# Part 2: Data Preparation +# =================== +G = nx.house_graph() +# explicitly set positions +pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)} + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +plt.figure(figsize=(10, 8)) + +nx.draw_networkx_nodes(G, pos, node_size=2000, nodelist=[4], node_color="teal") +nx.draw_networkx_nodes( + G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="orchid" +) +nx.draw_networkx_edges(G, pos, alpha=0.5, width=6) +# Adding text annotations +labels = {0: "0", 1: "1", 2: "2", 3: "3", 4: "4"} +nx.draw_networkx_labels(G, pos, labels=labels, font_size=16) +plt.axis("off") + +# =================== +# Part 4: Saving Output +# =================== +plt.tight_layout() +plt.savefig("graph_4.pdf", bbox_inches="tight") diff --git a/ChartMimic/dataset/ori_500/graph_5.png b/ChartMimic/dataset/ori_500/graph_5.png new file mode 100644 index 0000000000000000000000000000000000000000..d05e22014dd1c588c2cdb41402146887fae7f419 Binary files /dev/null and b/ChartMimic/dataset/ori_500/graph_5.png differ diff --git a/ChartMimic/dataset/ori_500/graph_5.py b/ChartMimic/dataset/ori_500/graph_5.py new file mode 100644 index 0000000000000000000000000000000000000000..2c32a145c24c536f9a8b8efff3b70e5b8d8f2c2f --- /dev/null +++ b/ChartMimic/dataset/ori_500/graph_5.py @@ -0,0 +1,36 @@ +# =================== +# Part 1: Importing Libraries +# =================== +import networkx as nx +import matplotlib.pyplot as plt + +# =================== +# Part 2: Data Preparation +# =================== +# Create a graph and add a self-loop to node 0 +G = nx.complete_graph(3, create_using=nx.DiGraph) +# G.add_edge(0, 0) +pos = nx.circular_layout(G) + +# Add self-loops to the remaining nodes +edgelist = [(1, 1), (2, 2), (0, 0)] +G.add_edges_from(edgelist) + +# =================== +# Part 3: Plot Configuration and Rendering +# =================== +plt.figure(figsize=(10, 8)) + +# As of version 2.6, self-loops are drawn by default with the same styling as +# other edges +nx.draw(G, pos, with_labels=True, node_color="coral") + +# Draw the newly added self-loops with different formatting +nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed") + +# =================== +# Part 4: Saving Output +# =================== +# Displaying the plot with tight layout to minimize white space +plt.tight_layout() +plt.savefig("graph_5.pdf", bbox_inches="tight")