# =================== # Part 1: Importing Libraries # =================== import matplotlib.pyplot as plt import numpy as np np.random.seed(0) # =================== # Part 2: Data Preparation # =================== # Data few_shot_k = np.array([4, 8, 12, 16, 20, 24, 28, 32]) trained_w_few_shot_ex = np.array([83, 88, 90, 92, 93, 94, 94.5, 95]) def_deduce_ex_gen = np.array([90]) error = np.array([1]) # =================== # Part 3: Plot Configuration and Rendering # =================== # Plotting fig, ax = plt.subplots(figsize=(6, 4)) # Adjusting figure size to 432x288 pixels # Trained with Few-Shot Examples ax.plot( few_shot_k, trained_w_few_shot_ex, marker="o", color="blue", label="Trained w Few-Shot Ex", ) ax.fill_between( few_shot_k, trained_w_few_shot_ex - 1, trained_w_few_shot_ex + 1, color="#e1eff4" ) # Default Deduce + Example Generation set the ax.errorbar( few_shot_k[0], def_deduce_ex_gen, yerr=error, fmt="o", color="red", label="Def Deduce+Ex Gen", capsize=3, ) # Customizing the plot ax.set_xlabel("Few-Shot K") ax.set_ylabel("Micro F1") ax.set_xlim(2, 34) ax.set_ylim(82, 96) # Adjusted y-axis limit to match the reference picture ax.legend(loc="lower right") ax.grid(True) ax.set_xticks([4, 8, 12, 16, 20, 24, 28, 32]) # =================== # Part 4: Saving Output # =================== # Show plot plt.tight_layout() plt.savefig("CB_18.pdf", bbox_inches="tight")