#!/usr/bin/env python from __future__ import annotations import os import string import gradio as gr import PIL.Image import torch from transformers import AutoProcessor, Blip2ForConditionalGeneration DESCRIPTION = "# [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)" if (SPACE_ID := os.getenv("SPACE_ID")) is not None: DESCRIPTION += f'\n
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
' if not torch.cuda.is_available(): DESCRIPTION += "\nRunning on CPU 🥶 This demo does not work on CPU.
" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b" MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl" if torch.cuda.is_available(): model_dict = { # MODEL_ID_OPT_6_7B: { # 'processor': # AutoProcessor.from_pretrained(MODEL_ID_OPT_6_7B), # 'model': # Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_OPT_6_7B, # device_map='auto', # load_in_8bit=True), # }, MODEL_ID_FLAN_T5_XXL: { "processor": AutoProcessor.from_pretrained(MODEL_ID_FLAN_T5_XXL), "model": Blip2ForConditionalGeneration.from_pretrained( MODEL_ID_FLAN_T5_XXL, device_map="auto", load_in_8bit=True ), } } else: model_dict = {} def generate_caption( model_id: str, image: PIL.Image.Image, decoding_method: str, temperature: float, length_penalty: float, repetition_penalty: float, ) -> str: model_info = model_dict[model_id] processor = model_info["processor"] model = model_info["model"] inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) generated_ids = model.generate( pixel_values=inputs.pixel_values, do_sample=decoding_method == "Nucleus sampling", temperature=temperature, length_penalty=length_penalty, repetition_penalty=repetition_penalty, max_length=50, min_length=1, num_beams=5, top_p=0.9, ) result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return result def answer_question( model_id: str, image: PIL.Image.Image, text: str, decoding_method: str, temperature: float, length_penalty: float, repetition_penalty: float, ) -> str: model_info = model_dict[model_id] processor = model_info["processor"] model = model_info["model"] inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) generated_ids = model.generate( **inputs, do_sample=decoding_method == "Nucleus sampling", temperature=temperature, length_penalty=length_penalty, repetition_penalty=repetition_penalty, max_length=30, min_length=1, num_beams=5, top_p=0.9, ) result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return result def postprocess_output(output: str) -> str: if output and output[-1] not in string.punctuation: output += "." return output def chat( model_id: str, image: PIL.Image.Image, text: str, decoding_method: str, temperature: float, length_penalty: float, repetition_penalty: float, history_orig: list[str] = [], history_qa: list[str] = [], ) -> tuple[dict[str, list[str]], dict[str, list[str]], dict[str, list[str]]]: history_orig.append(text) text_qa = f"Question: {text} Answer:" history_qa.append(text_qa) prompt = " ".join(history_qa) output = answer_question( model_id, image, prompt, decoding_method, temperature, length_penalty, repetition_penalty, ) output = postprocess_output(output) history_orig.append(output) history_qa.append(output) chat_val = list(zip(history_orig[0::2], history_orig[1::2])) return gr.update(value=chat_val), gr.update(value=history_orig), gr.update(value=history_qa) examples = [ [ "house.png", "How could someone get out of the house?", ], [ "flower.jpg", "What is this flower and where is it's origin?", ], [ "pizza.jpg", "What are steps to cook it?", ], [ "sunset.jpg", "Here is a romantic message going along the photo:", ], [ "forbidden_city.webp", "In what dynasties was this place built?", ], ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) image = gr.Image(type="pil") with gr.Accordion(label="Advanced settings", open=False): with gr.Row(): model_id_caption = gr.Dropdown( label="Model ID for image captioning", choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL], value=MODEL_ID_FLAN_T5_XXL, interactive=False, visible=False, ) model_id_chat = gr.Dropdown( label="Model ID for VQA", choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL], value=MODEL_ID_FLAN_T5_XXL, interactive=False, visible=False, ) sampling_method = gr.Radio( label="Text Decoding Method", choices=["Beam search", "Nucleus sampling"], value="Beam search", ) temperature = gr.Slider( label="Temperature (used with nucleus sampling)", minimum=0.5, maximum=1.0, value=1.0, step=0.1, ) length_penalty = gr.Slider( label="Length Penalty (set to larger for longer sequence, used with beam search)", minimum=-1.0, maximum=2.0, value=1.0, step=0.2, ) rep_penalty = gr.Slider( label="Repeat Penalty (larger value prevents repetition)", minimum=1.0, maximum=5.0, value=1.5, step=0.5, ) with gr.Row(): with gr.Column(): with gr.Box(): caption_button = gr.Button(value="Caption it!") caption_output = gr.Textbox(label="Caption Output", show_label=False).style(container=False) with gr.Column(): with gr.Box(): chatbot = gr.Chatbot(label="VQA Chat") history_orig = gr.State(value=[]) history_qa = gr.State(value=[]) vqa_input = gr.Text(label="Chat Input", show_label=False, max_lines=1).style(container=False) with gr.Row(): clear_chat_button = gr.Button(value="Clear") chat_button = gr.Button(value="Submit") gr.Examples( examples=examples, inputs=[ image, vqa_input, ], ) caption_button.click( fn=generate_caption, inputs=[ model_id_caption, image, sampling_method, temperature, length_penalty, rep_penalty, ], outputs=caption_output, api_name="caption", ) chat_inputs = [ model_id_chat, image, vqa_input, sampling_method, temperature, length_penalty, rep_penalty, history_orig, history_qa, ] chat_outputs = [ chatbot, history_orig, history_qa, ] vqa_input.submit( fn=chat, inputs=chat_inputs, outputs=chat_outputs, ) chat_button.click( fn=chat, inputs=chat_inputs, outputs=chat_outputs, api_name="chat", ) clear_chat_button.click( fn=lambda: ("", [], [], []), inputs=None, outputs=[ vqa_input, chatbot, history_orig, history_qa, ], queue=False, api_name="clear", ) image.change( fn=lambda: ("", [], [], []), inputs=None, outputs=[ caption_output, chatbot, history_orig, history_qa, ], queue=False, ) demo.queue(max_size=10).launch()