Spaces:
Running
Running
File size: 7,543 Bytes
bd9ac5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
var state = {
dataset_size: 15000,
threshold: .8,
label: 8
}
var sel = d3.select('.accuracy-v-privacy-class').html('')
.at({role: 'graphics-document', 'aria-label': `Line chart showing that high accuracy models can still perform poorly on some digit classes.`})
async function loadData(){
var rawData = await util.getFile(`cns-cache/grid_${state.dataset_size}trainpoints_test_labels.csv`)
rawData.forEach(d => {
delete d['']
d.i = +d.i
d.label = +d.label
})
var aVal2Meta = {}
var metadata = await util.getFile('cns-cache/model_grid_test_accuracy.json')
metadata
.filter(d => d.dataset_size == state.dataset_size)
.forEach(d => aVal2Meta['aVal_' + d.aVal] = d)
var allCols = d3.keys(rawData[0])
.filter(d => d.includes('aVal'))
.map(key => {
var {epsilon, aVal} = aVal2Meta[key]
return {key, epsilon, aVal}
})
var byDigit = d3.nestBy(rawData, d => d.label)
byDigit.forEach(d => {
d.label = +d.key
})
byDigit.forEach(digitClass => {
digitClass.cols = allCols.map(({key, epsilon}, colIndex) => {
return {
key,
colIndex,
epsilon,
digitClass,
label: digitClass.label,
accuracy: d3.mean(digitClass, d => d[key] > state.threshold)
}
})
})
var data = _.flatten(byDigit.map(d => d.cols))
.filter(d => util.epsilonExtent[1] <= d.epsilon && d.epsilon <= util.epsilonExtent[0])
var byLabel = d3.nestBy(data, d => d.label)
byLabel.forEach((d, i) => {
d.label = d.key
})
return {data, byLabel}
}
async function initChart(){
var {data, byLabel} = await loadData()
var c = d3.conventions({
sel: sel.append('div'),
height: 400,
margin: {bottom: 75, top: 5},
layers: 'ds',
})
c.x = d3.scaleLog().domain(util.epsilonExtent).range(c.x.range())
c.xAxis = d3.axisBottom(c.x).tickFormat(d => {
var rv = d + ''
if (rv.split('').filter(d => d !=0 && d != '.')[0] == 1) return rv
})
c.yAxis.tickFormat(d => d3.format('.0%')(d))//.ticks(8)
d3.drawAxis(c)
util.addAxisLabel(c, 'Higher Privacy →', '')
util.ggPlotBg(c, false)
c.layers[0].append('div')
.st({fontSize: 12, color: '#555', width: 120*2, textAlign: 'center', lineHeight: '1.3em', verticalAlign: 'top'})
.translate([c.width/2 - 120, c.height + 45])
.html('in ε')
var line = d3.line().x(d => c.x(d.epsilon)).y(d => c.y(d.accuracy))
var lineSel = c.svg.append('g').appendMany('path.accuracy-line', byLabel)
.at({
d: line,
fill: 'none',
stroke: '#000',
// opacity: 0,
})
.on('mousemove', setActiveLabel)
var circleSel = c.svg.append('g')
.appendMany('g.accuracy-circle', data)
.translate(d => [c.x(d.epsilon), c.y(d.accuracy)])
.on('mousemove', setActiveLabel)
// .call(d3.attachTooltip)
circleSel.append('circle')
.at({r: 7, stroke: '#fff'})
circleSel.append('text')
.text(d => d.label)
.at({textAnchor: 'middle', fontSize: 10, fill: '#fff', dy: '.33em'})
setActiveLabel(state)
function setActiveLabel({label}){
lineSel
.classed('active', 0)
.filter(d => d.label == label)
.classed('active', 1)
.raise()
circleSel
.classed('active', 0)
.filter(d => d.label == label)
.classed('active', 1)
.raise()
state.label = label
}
async function updateDatasetSize(){
var newData = await loadData()
data = newData.data
byLabel = newData.byLabel
lineSel.data(byLabel)
.transition()
.at({d: line})
circleSel.data(data)
.transition()
.translate(d => [c.x(d.epsilon), c.y(d.accuracy)])
c.svg.select('text.annotation').remove()
}
function updateThreshold(){
data.forEach(d => {
d.accuracy = d3.mean(d.digitClass, e => e[d.key] > state.threshold)
})
lineSel.at({d: line})
circleSel.translate(d => [c.x(d.epsilon), c.y(d.accuracy)])
c.svg.select('.y .axis-label').text(`Test Points With More Than ${d3.format('.2%')(state.threshold)} Confidence In Label`)
c.svg.select('text.annotation').remove()
}
updateThreshold()
return {c, updateDatasetSize, updateThreshold}
}
async function init(){
sel.append('div.chart-title').text('High accuracy models can still perform poorly on some digit classes')
var chart = await initChart()
var buttonRowSel = sel.append('div.button-row')
.st({height: 50})
var buttonSel = buttonRowSel.append('div')
.st({width: 500})
.append('span.chart-title').text('Training points')
.parent()
.append('div').st({display: 'inline-block', width: 300, marginLeft: 10})
.append('div.digit-button-container.dataset_size')
.appendMany('div.button', [2000, 3750, 7500, 15000, 30000, 60000])
.text(d3.format(','))
.classed('active', d => d == state.dataset_size)
.on('click', d => {
buttonSel.classed('active', e => e == d)
state.dataset_size = d
chart.updateDatasetSize()
})
buttonRowSel.append('div.conf-slider')
.append('span.chart-title').text('Confidence threshold')
.parent()
.append('input.slider-native')
.at({
type: 'range',
min: .0001,
max: .9999,
step: .0001,
value: state.threshold,
})
.on('input', function(){
state.threshold = this.value
chart.updateThreshold()
})
function addSliders(){
var width = 140
var height = 30
var color = '#000'
var sliders = [
{key: 'threshold', label: 'Confidence threshold', r: [.0001, .9999]},
]
sliders.forEach(d => {
d.value = state[d.key]
d.xScale = d3.scaleLinear().range([0, width]).domain(d.r).clamp(1)
})
d3.select('.conf-slider .slider-container').remove()
d3.select('.slider-native').remove()
var svgSel = d3.select('.conf-slider').parent()
// .st({marginTop: 5, marginBottom: 5})
.appendMany('div.slider-container', sliders)
.append('svg').at({width, height})
.append('g').translate([10, 25])
var sliderSel = svgSel
.on('click', function(d){
d.value = d.xScale.invert(d3.mouse(this)[0])
renderSliders(d)
})
.classed('slider', true)
.st({cursor: 'pointer'})
var textSel = sliderSel.append('text.annotation')
.at({y: -15, fontWeight: 300, textAnchor: 'middle', x: 180/2})
sliderSel.append('rect')
.at({width, height, y: -height/2, fill: 'rgba(0,0,0,0)'})
sliderSel.append('path').at({
d: `M 0 -.5 H ${width}`,
stroke: color,
strokeWidth: 1
})
var leftPathSel = sliderSel.append('path').at({
d: `M 0 -.5 H ${width}`,
stroke: color,
strokeWidth: 3
})
var drag = d3.drag()
.on('drag', function(d){
var x = d3.mouse(this)[0]
d.value = d.xScale.invert(x)
renderSliders(d)
})
var circleSel = sliderSel.append('circle').call(drag)
.at({r: 7, stroke: '#000'})
function renderSliders(d){
if (d) state[d.key] = d.value
circleSel.at({cx: d => d.xScale(d.value)})
leftPathSel.at({d: d => `M 0 -.5 H ${d.xScale(d.value)}`})
textSel
.at({x: d => d.xScale(d.value)})
.text(d => d3.format('.2%')(d.value))
chart.updateThreshold()
}
renderSliders()
}
addSliders()
chart.c.svg.append('text.annotation')
.translate([505, 212])
.tspans(d3.wordwrap(`8s are correctly predicted with high confidence much more rarely than other digits`, 25), 12)
.at({textAnchor: 'end'})
}
init()
|