merve's picture
merve HF staff
Update app.py
2e34687 verified
raw
history blame
2.05 kB
import gradio as gr
from transformers import pipeline
import torch
import numpy as np
from PIL import Image
import gradio as gr
from gradio_client import Client
import os
import spaces
import json
dpt_beit = pipeline(task = "depth-estimation", model="Intel/dpt-beit-base-384", device=0)
depth_anything = pipeline(task = "depth-estimation", model="nielsr/depth-anything-small", device=0)
dpt_large = pipeline(task = "depth-estimation", model="intel/dpt-large", device=0)
def depth_anything_inference(img):
return depth_anything(img)["depth"]
def dpt_beit_inference(img):
return dpt_beit(img)["depth"]
def dpt_large_inference(img):
return dpt_large(img)["depth"]
@spaces.GPU
def infer(img):
return dpt_large_inference(img), dpt_beit_inference(img), depth_anything_inference(img)
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Compare Depth Estimation Models<center><h1>")
gr.Markdown("In this Space, you can compare different depth estimation models: [DPT-Large](https://huggingface.co/Intel/dpt-large), [DPT with BeiT backbone](https://huggingface.co/Intel/dpt-beit-large-512) and the recent [Depth Anything Model small checkpoint](https://huggingface.co/LiheYoung/depth-anything-small-hf). 🀩")
gr.Markdown("Simply upload an image or try the example to see the outputs.")
with gr.Column():
with gr.Row():
input_img = gr.Image(label="Input Image", type="pil")
with gr.Row():
output_1 = gr.Image(type="pil", label="DPT-Large")
output_2 = gr.Image(type="pil", label="DPT with BeiT Backbone")
output_3 = gr.Image(type="pil", label="Depth Anything")
gr.Examples([["bee.jpg"]],
inputs = input_img,
outputs = [output_1, output_2, output_3],
fn=infer,
cache_examples=True,
label='Click on any Examples below to get depth estimation results quickly πŸ‘‡'
)
input_img.change(infer, [input_img], [output_1, output_2, output_3])
demo.launch(debug=True)