Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import gradio as gr
|
7 |
+
from gradio_client import Client
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
import spaces
|
11 |
+
|
12 |
+
dpt_beit = pipeline(task = "depth-estimation", model="Intel/dpt-beit-base-384")
|
13 |
+
depth_anything = pipeline(task = "depth-estimation", model="nielsr/depth-anything-small")
|
14 |
+
@spaces.GPU
|
15 |
+
def depth_anything_inference(image_path):
|
16 |
+
return depth_anything(image_path)["depth"]
|
17 |
+
|
18 |
+
@spaces.GPU
|
19 |
+
def dpt_beit_inference(image):
|
20 |
+
return dpt_beit(image)["depth"]
|
21 |
+
|
22 |
+
def dpt_large(image_path):
|
23 |
+
try:
|
24 |
+
client = Client("https://nielsr-dpt-depth-estimation.hf.space/")
|
25 |
+
return Image.open(client.predict(image_path))
|
26 |
+
except Exception:
|
27 |
+
gr.Warning("The DPT-Large Space is currently unavailable. Please try again later.")
|
28 |
+
return ""
|
29 |
+
|
30 |
+
|
31 |
+
def infer(image):
|
32 |
+
return dpt_large(image), dpt_beit_inference(image), depth_anything_inference(image)
|
33 |
+
|
34 |
+
|
35 |
+
iface = gr.Interface(fn=infer,
|
36 |
+
inputs=gr.Image(type="pil"),
|
37 |
+
outputs=[gr.Image(type="pil", label="DPT-Large"),
|
38 |
+
gr.Image(type="pil", label="DPT with BeiT Backbone"),
|
39 |
+
gr.Image(type="pil", label="Depth Anything")],
|
40 |
+
|
41 |
+
title="Compare Depth Estimation Models",
|
42 |
+
description="In this Space you can compare various depth estimation models",
|
43 |
+
examples=[["bee.JPG"]])
|
44 |
+
iface.launch(debug=True)
|